N. I. Abdel-Sayed Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University



Дата02.08.2017
Размер54.02 Kb.
#27073



Bulgarian Chemical Communications, Volume 42, Number 1 (pp. 20–26) 2010


© 2010 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria

Novel synthesis of new symmetrical bis-heterocyclic compounds:
synthesis of bis-thiazolo, bis-pyrazolo-, bis-benzotriazolo, bis-indolo- and
bis-pyrazolyl thiazolo-2,6-diamino pyridine derivatives


* To whom all correspondence should be sent:


E-mail: nadia_iskandar@yahoo.com

N. I. Abdel-Sayed

Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University,
Heliopolis, P.O. Box 11757, Cairo, A. R. Egypt

Received December 25, 2008; Revised June 8, 2009

The reaction of 2,6-diaminopyridine with chloroacetyl chloride yielded 2,6-bis-(2-chloroacetamido-N-yl) pyridine. The later reacted with KCN, KSCN, indole and benzotriazole separately to give 2,6-bis-(cyanoacetamido-N-yl)pyridine [which on coupling with benzenediazonium chloride yielded the bis-cyanophenyl hydrazone derivative and by refluxing the later compound with chloroacetonitrile afforded 2,6-diamido-bis-(4-amino-5-cyano-1-phenylpyrazol-3-yl)pyridine], 2,6-bis-(thiocyanate acetamido-N-yl)pyridine, 2,6-bis-[2-(1[H]-indol-3-yl)acetamido-N-yl] pyridine and 2,6-bis-[2-(1,2,3-benzotriazol-1-yl)acetamido-N-yl]pyridine, respectively. Acetylation of 2,6-diaminopyridine with acetic anhydride afforded 2,6-bis-(acetamido-N-yl) pyridine which on coupling with benzenediazonium chloride yielded the bis-phenyl-hydrazone derivative. By reacting the later with chloroacetonitrile afforded 2,6-diamino-bis-(5-cyano-1-phenylpyrazol-4-yl)pyridine. Under basic conditions the reaction of 2,6-diaminopyridine with CS2 followed by ethyl-α-bromo-cyanoacetate and phenacyl bromide separately afforded 2,6-bis-(5-cyano-4-hydroxythiazol-3-yl-2-thione)pyridine and 2,6-bis-(4-phenyl thiazol-3-yl-2-thione)pyridine respectively. Condensation of the later compounds separately with malononitrile yielded the dicyanomethinothiazole derivatives. The reaction of either hydrazine hydrate or phenyl hydrazine with the thiazolyl thione derivatives or with the dicyanomethinothiazole derivatives afforded the hydrazono- thiazole and the pyrazole derivatives respectively.

Key words: 2,6-diaminopyridine; bis-(thiazolo)pyridine; bis-(pyrazolo)pyridine; bis-(hydrazonopyrazolo)pyridine.

Introduction

The incorporation of two moieties increases biological activity of both and thus it was of value to synthesize some new heterocyclic derivatives having two moieties in the same molecules. In continuation to our programme [1–10], this research has been devoted to the development of new classes of bis-heterocycle systems which incorporate the bis-thi-azolo-, bis-pyrazolo-, bis-benzotriazolo-, bis-indolo-, bis-triazolo- and bis-pyrazolyl thiazolo- pyridine derivatives moiety. The importance of such com-pounds lies in their diverse pharmaceutical activi-ties namely antibacterial [11, 12], antidiabetic [13], anti HIV [14], antiviral [15, 16] and analgesic activities.

Results and Discussion

Mixing 2,6-diaminopyridine with chloroacetyl-chloride in dioxane afforded the 2,6-bis-(2-chloro-acetamido)pyridine 2 (Scheme 1). Compound 2 could be converted into 7 on treatment with potassium cyanide and into 8 on treatment with potassium thio-cyanate. Treatment of 2 with indole and with benzo-triazole separately in toluene/triethylamine afforded 9 and 10, respectively. The 1H NMR of 10 revealed non identity of all four benzotriazolyl protons.

Compound 11 is symmetrical and should have shown only two signals for these protons (Scheme 2). Compound 7 coupled readily with benzene dia-zonium chloride to yield the bis-aryl hydrazone derivative 12 which on refluxing in DMF with chloroacetonitrile afforded the bis-pyrazolyl diami-dopyridine derivative 14 (Scheme 2). On the other hand acetylation of compound 1 yielded the 2,6-bis-(acetamido)pyridine 3 (Scheme 1). Coupling of 3 with benzene diazonium chloride afforded the bis-hydrazone derivative 15. Thus, reacting 15 with chloroacetonitrile in a mixture of DMF and tri-ethylamine has afforded 17 in excellent yield. Inter-mediacy of 16 is most likely (Scheme 2). Further, the reaction of 1 with carbon disulphide under basic conditions in KOH/DMF solution affords the non isolable intermediate, the N-potassium thiocarba-mate salt 4 [17]. Thus, the reaction of 4 with ethyl-α-bromocyanoacetate and with phenacyl bromide separately afforded the thiazole derivatives 5 and 6 respectively (Scheme 1).

Scheme 1.

Confirmation of the structures of 5 and 6 were obtained through studying their reactivity towards chemical reagents. The reaction of compounds 5 or 6 with either hydrazine hydrate or phenyl hydrazine afforded the corresponding hydrazone derivatives 18a,b and 22a,b respectively (Scheme 3). Forma-tion of the latter compounds took place through elimination of hydrogen sulphide. Their structures were confirmed by analytical and spectral data. The reaction of 5 and 6 with malononitrile gave the condensed products the dicyanomethino derivatives 19 and 23 respectively (Scheme 3); their formation took place via elimination of hydrogen sulphide. The reaction of 19 and 23 with either hydrazine hydrate or phenylhydrazine afforded the pyrazole derivatives 20, 21, 24 and 25 (Scheme 3). The structures of the latter compounds were confirmed by analytical and spectral data.

Experimental

All melting points are uncorrected. IR spectra (KBr) were recorded on a Pye Unicam SP-100 spec-trophotometer. 1H and 13C NMR spectra (DMSO-d6 as a solvent) were obtained on a Varian Gemini 200 and on a Bruker AC200 and AC600 MHz spectro-meters respectively, TMS as internal standard, chemical shifts in δ (ppm); mass spectra: AEI MS 30 mass spectrometer operating at 70 eV; elemental analysis were obtained from Microanalytical Data Unit at Cairo University, Egypt.

2,6-Bis-(2-chloroacetamido-N-yl) pyridine (2): A mixture of 1 (1.09 g, 10 mmol) and chloroacetyl-chloride (2.30 g, 20 mmol) in 20 ml of dioxane was refluxed for 45 min. The mixture was allowed to cool to room temperature then poured onto cold water. The obtained solid was collected by filtration and crystallized from methanol to give pale pink crystals (93% yield), m.p. 105°C; IR (KBr) ν (cm–1): 3118 (NH) and 1700 (C=O); 1H NMR (DMSO-d6) δ (ppm): 4.58 (s, 4H, 2CH2), 8.10–8.30 (m, 3H, pyr-H), 8.50 (s, 2H, 2NH); 13C NMR (DMSO-d6) δ (ppm): 190.5 (2CO), 154.2 (C-2 and C-6 pyridine), 149.3 (C-3 and C-5 pyridine), 138.5 (C-4 pyridine), 53.23 (CH2); MS: m/z = 262 [M·+]; Anal. Calcd. for C9H9N3Cl2O2 (262.09): C, 41.24; H, 3.46; N, 16.03; Cl, 27.05. Found: C, 41.35; H, 3.47; N, 16.25; Cl, 27.35.


N. I. Abdel-Sayed: Novel synthesis of new symmetrical bis-heterocyclic compounds …



2,6-Bis-(acetamido-N-yl) pyridine (3): Reflux gently 1 g of 1 and 3 ml of acetic anhydride for 15 min. Pour in 20 ml of cold water then boil to destroy any excess of acetic anhydride. Filter the precipitate, wash with a little cold water and dry in air. Crys-tallization from ethanol afforded 0.18 g of a creamy crystals (95% yield), m.p. 95°C; IR (KBr) ν (cm–1): 3225 (NH), 1700 (C=O); 1H NMR (DMSO-d6) δ ppm: 1.5 (s, 6H, 2CH3), 8.10–8.30 (m, 3H, pyr-H), 8.55 (s, 2H, 2NH); 13CNMR (DMSO-d6) δ (ppm): 184.5 (2CO), 153.5 (C-2 and C-6 pyridine), 148.4 (C-3 and C-5 pyridine), 138.7 (C-4 pyridine), 24.15 (CH3); MS: m/z = 193 [M·+]; Anal. Calcd. for C9H11N3O2 (193.21): C, 55.95; H, 5.74; N, 21.75. Found: C, 55.90; H, 5.76; N, 21.90.

2,6-Bis (5-cyano-4-hydroxythiazol-3-yl-2-thione) pyridine (5): To a solution of 1 (1.09 g, 0.01 mol) in 30 ml of DMF, carbon disulphide (1.52 g, 0.02 mol) and potassium hydroxide (1.12 g, 0.02 mol) in 10 ml of water were added. The whole reaction mixture was heated in a boiling water bath for 1 h then left to cool till 20°C. To a cold solution of the reaction mixture (3.84 g, 0.02 mol) of ethyl α-bromocyano-acetate was added. The reaction mixture was stirred at room temperature for one night. The solid product, formed upon acidification with hydrochloric acid, was collected by filtration and crystallized from dioxane to give orange crystals (87% yield), m.p. 150°C; IR (KBr) ν (cm–1): 3480–3340 (OH), 2225 (2 CN), 1210–1195 (2 C=S); 1H NMR (DMSO-d6) δ (ppm): 7.90–8.25 (m, 3H, pyr-H), 10.33 (s, 2H, 2OH); 13C NMR (DMSO-d6) δ (ppm): 164.5 (2C=S), 153.2 (C-2 and C-6 pyridine), 150.2 (C-4 and C-4' thiazole), 148.1 (C-3 and C-5 pyridine), 140.8 (C-5 and C-5' thiazole), 138.1 (C-4 pyridine), 119.7 (2CN); MS: m/z = 391 [M·+]; Anal. Calcd. for C13H5N5S4O2 (391.47): C, 39.89; H, 1.29; N, 17.89; S, 32.76. Found: C, 39.95; H, 1.31; N, 18.01; S, 32.80.

2,6-Bis-(4-phenylthiazol-3-yl-2-thione)pyridine (6): To a solution of 1 (1.09 g, 0.01 mol) in 30 ml of DMF, (1.52 g, 0.02 mol) of carbon disulphide and (1.12 g, 0.02 mol) of potassium hydroxide in 10 ml of water were added. The whole reaction mixture was heated in boiling water bath for 1 h then left to cool down to 20°C; (3.96 g, 0.02 mol) of phenacyl-bromide was added to this cold solution. The reac-tion mixture was stirred at room temperature for one night. The solid product formed upon acidification with hydrochloric acid was collected by filtration. Crystallization from dioxane gave red crystals (80% yield), m.p. 99°C; IR (KBr) ν (cm–1): 3060 (CH aro-matic), 1200–1190 (C=S); 1H NMR (DMSO-d6) δ (ppm): 6.95 (s, 2H, thiazole H-5), 7.32–7.55 (m, 10H, 2C6H5), 7.95–8.30 (m, 3H, pyr-H); 13C NMR (DMSO-d6) δ (ppm): 180.4 (C-5 and C-5' thiazole), 164.1 (2C=S), 153.4 (C-2 and C-6 pyridine), 148.8 (C-3 and C-5 pyridine), 146.5 (C-4 and C-4' thia-zole), 138.5 (C-4 pyridine), 152.1, 143.2, 132.1, 129.5, 128.5, 126.2 (C-arom.); MS: m/z = 461 [M·+]; Anal. Calcd. for C23H15N3S4 (461.65): C, 59.84; H, 3.28; N, 9.10; S, 27.78. Found: C, 59.80; H, 3.27; N, 9.11; S, 27.82.


N. I. Abdel-Sayed: Novel synthesis of new symmetrical bis-heterocyclic compounds …



Scheme 2.

Scheme 3.



2,6-Bis-(cyanoacetamido-N-yl) pyridine (7): To a warmed solution of 2 (1.31 g, 5 mmol) in 10 ml benzene, were added (0.78 g, 12 mmol) of potassium cyanide in 10 ml of water. The reaction mixture was stirred at 50°C (bath temperature) for 1 h, then the aqueous layer was separated and poured onto acidified cooled water. The product, so formed, was collected by filtration and dried. Crystallization from acetic acid gave creamy crystals (95% yield), m.p. 235°C; IR (KBr) ν (cm–1): 2252 (CN), 3220 (NH), 1638 (C=O); 1H NMR (DMSO-d6) δ (ppm): 4.48 (s, 4H, 2 CH2), 8.10–8.30 (m, 3H, pyr-H), 9.45 (s, 2H, 2NH); MS: m/z = 243 [M·+]; Anal. Calcd. for C11H9N5O2 (243.23): C, 54.32; H, 3.73; N, 28.79. Found: C, 54.37; H, 3.74; N, 28.84.


N. I. Abdel-Sayed: Novel synthesis of new symmetrical bis-heterocyclic compounds …



2,6-Bis-(thiocyanate acetamido-N-yl)pyridine (8): To a warmed solution of 2 (1.13 g, 5 mmol) in 10 ml acetonitrile, were added (0.92 g, 12 mmol) of potassium thiocyanate. The reaction mixture was stirred at 50°C (bath temperature) for 1 h, then poured onto ice cold water. The product, so formed, was collected by filtration, crystallized from ethanol to give faint pink crystals (95% yield), m.p. 130°C; IR (KBr) ν (cm–1): 3220 (NH), 2157 (SCN), 1696 (C=O); 1H NMR (DMSO-d6) δ (ppm): 4.48 (s, 4H, 2CH2), 8.10–8.30 (m, 3H, pyr-H), 9.20 (s, 2H, 2NH); MS: m/z = 307 [M·+]; Anal. Calcd. for C11H9N5S2O2 (307.35): C, 42.99; H, 2.95; N, 22.79; S, 20.86. Found: C, 43.01; H, 2.98; N, 23.01; S, 20.88.

General procedure for the synthesis of compounds
9 and 10

A mixture of 2 (2.62 g, 10 mmol), (2.34 g, 20 mmol) of indole or (2.38 g, 20 mmol) of benzo-triazole and 2 ml triethylamine (20 mmol) in 15 ml of toluene was refluxed for 2 h. The solvent was removed in vacuum and the remaining residue was triturated with 5% sodium hydroxide. The solid product, so formed, was collected by filtration.



2,6-Bis-[2-(1[H]-indol-3-yl)acetamido-N-yl] pyri-dine (9): Crystallization from ethanol gave white crystals (78% yield), m.p. 162°C; IR (KBr) ν (cm–1): 3225 (NH), 1700 (C=O); 1H NMR (DMSO-d6) δ (ppm): 4.60 (s, 4H, 2CH2), 7.38–7.75 (m, 8H, 2C6H4), 8.10–8.30 (m, 3H, pyr-H), 8.44 (d, 2H, two indole H-2), 9.43 (s, 2H, 2NH), 11.92 (br s, 2H, two indole NH); MS: m/z = 423 [M·+]; Anal. Calcd. for C25H21N5O2 (423.48): C, 70.91; H, 4.99; N, 16.54. Found: C, 70.94; H, 4.98; N, 16.78.

2,6-Bis-[2-(1,2,3-benzotriazol-1-yl)acetamido-N-yl] pyridine (10): Crystallization from ethanol gave white solid (75% yield), m.p. 175°C; IR (KBr) ν (cm–1): 3225 (NH), 1700 (C=O), 1H NMR (DMSO-d6) δ (ppm): 4.58 (s, 4H, 2CH2), 7.33–7.80 (m, 8H, 2C6H4), 8.10–8.30 (m, 3H, pyr-H), 9.33 (s, 2H, 2NH); MS: m/z = 427 [M·+]; Anal. Calcd. for C21H17N9O2 (427.43): C, 59.01; H, 4.01; N, 29.49. Found: C, 59.05; H, 4.00; N, 29.55.

General procedure for the synthesis of compounds 12 and 15

To a stirred solution of (0.01 mol) of 7 or 3 in 20 ml of dioxane containing 10 g of sodium acetate, was added benzene diazonium salt (prepared from 20 mmol of aniline and the appropriate quantities of sodium nitrite and hydrochloric acid). The solid product separated on standing was collected by filtration.



2,6-Bis-(2-cyano-2-phenylhydrazonocetamido-N-yl)pyridine (12): Crystallization from dioxane gave yellow crystals (75% yield), m.p. 261°C; IR (KBr) ν (cm–1): 3440, 3234 (NH), 2215 (CN), 1700 (C=O); 1H NMR (DMSO-d6) δ (ppm): 7.11–7.25 (m, 10H, 2C6H5), 8.10–8.30 (m, 3H, pyr-H), 9.35 (s, 2H, 2NH), 12.04 (br, 2H, hydroazonyl NH); MS: m/z = 451 [M·+]; Anal. Calcd. for C23H17N9O2( 451.451): C, 61.19; H, 3.79; N, 27.92. Found: C, 61.23, H, 3.77; N, 28.15.

2,6-Bis-(1-oxo-2-phenylhydrazonoethanoneami-do-N-yl)pyridine (15): Crystallization from dioxane gave yellow crystals (78% yield), m.p. 255°C; IR (KBr) ν (cm–1): 3440, 3230 (NH), 1700 (C=O); 1H NMR (DMSO-d6) δ (ppm): 7.11–7.45 (m, 10H, 2C6H5), 7.56 (s, 2H, olefinic CH), 8.10–8.30 (m, 3H, pyr-H), 9.30 (s, 2H, 2NH), 12.04 (br, 2H, two hydrazone NH); MS: m/z = 401 [M·+]; Anal. Calcd. for C21H19N7O2 (401.43): C, 62.83; H, 4.77; N, 24.42. Found: C, 62.85; H, 4.74; N, 24.46.

General procedure for the synthesis of compounds 14 and 17


N. I. Abdel-Sayed: Novel synthesis of new symmetrical bis-heterocyclic compounds …



To a solution of (5 mmol) of 12 or 15 in a 2 ml of DMF and 10 ml of triethylamine, was added (1.3 ml, 20 mmol) of chloroacetonitrile. The reaction mixture was refluxed for 1 h and then left to cool to room temperature. The obtained residual product was triturated with ethanol to give a solid product that was collected by filtration, washed with water and crystallized from the proper solvent.

2,6-Diamido-bis-(4-amino-5-cyano-1-phenylpy-razol-3-yl) pyridine (14): Crystallization from ethanol gave faint brown crystals (75% yield), m.p. 268–270oC; IR (KBr) ν (cm–1): 1700 (C=O), 3450 (NH2), 3200 (NH), 2220 (CN), 1650 (C=N); 1H NMR (DMSO-d6) δ (ppm): 6.52(s, 4H, 2NH2), 7.31–7.65 (m, 10H, 2C6H5), 8.10–8.30 (m, 3H, pyr-H), 8.90 (s, 2H, 2NH); MS: m/z = 529 [M·+]; Anal. Calcd. for C27H19N11O2 (529.53): C, 61.24; H, 3.62; N, 29.10. Found: C, 61.25; H, 3.61; N, 29.40.

2,6-Diamino-bis-(5-cyano-1-phenylpyrazol-4-yl) pyridine (17): Crystallization from ethanol gave faint brown crystals (85% yield), m.p. 230°C; IR (KBr) ν (cm–1): 3200(NH), 2220 (CN), 1600 (C=C), 1650 (C=N); 1H NMR (DMSO-d6) δ (ppm): 7.30 (s, 2H, pyrazolyl H-3), 7.41–7.65 (m, 10H, 2C6H5), 8.10–8.30 (m, 3H, pyr-H), 8.35 (s, 2H, 2NH); MS: m/z = 443 [M·+]; Anal. Calcd. for C25H17N9 (443.48): C, 67.71; H, 3.86; N, 28.43. Found: C, 67.72; H, 3.84; N, 28.44.

2,6-Bis-(5-cyano-2-dicyanomethino-4-hydroxy-thiazol-N-yl)pyridine (19): A solution of 5 (3.91g, 0.01 mol) in 40 ml of DMF containing piperidine 0.5 ml, (1.32 ml, 0.02 mol) of malononitrile was added. The reaction mixture was heated under reflux for 10 h, then evaporated in vacuo. The remaining product was triturated with ethanol and the formed solid product was collected by filtration. Crystal-lization from dioxane gave brown crystals (75% yield), m.p. > 360°C; IR (KBr) ν (cm–1): 3490 (OH), 2225, 2220, 2215 (CN), 1655 (C=C); 1H NMR (DMSO-d6) δ (ppm): 8.10–8.30 (m, 3H, pyr-H), 10.44 (s, 2H, 2OH); MS: m/z = 455 [M·+]; Anal. Calcd. for C19H5N9S2O2 (455.44): C, 50.11; H, 1.11; N, 27.68; S, 14.08.Found: C, 50.15; H, 1.09; N, 27.72; S, 14.12.

General procedure for the synthesis of compounds 18a, b; 20, 21 and 22a, b

To a solution of 5, 19 or 6 (0.01 mol) in 30 ml of DMF, hydrazine hydrate or phenylhydrazine (0.04 mol) or (0.02 mol) were added, respectively. The reaction mixture was heated under reflux for 6–8 h then poured into ice/water mixture containing few drops of hydrochloric acid and the formed solid product was collected by filtration.



2,6-Bis-(3-amino-1[H]-5-hydrazonopyrazolo[4,5-d]thiazol-N-yl) pyridine (18a): Crystallization from ethanol gave pale yellow crystals (68% yield), m.p.> 360°C; IR (KBr) ν (cm–1): 3465–3365 (NH, NH2), 1660 (exocyclic C=N), 1645 (C=C); 1H NMR (DMSO-d6) δ (ppm): 4.46, 5.35 (2s, 8H, 4NH2), 8.10–8.30 (m, 3H, pyr-H), 8.44 (s, 2H, 2NH); MS: m/z = 415 [M·+]; Anal. Calcd. for C13H13N13S2 (415.46): C, 37.58; H, 3.15;N, 43.83; S, 15.44. Found: C, 37.56; H, 3.16; N, 43.85; S, 15.43.

2,6-Bis-(3-amino-1-phenyl-5-phenylhydrazono-pyrazolo[4,5-d]thiazol-N-yl)pyridine (18b): Crystal-lization from dioxane gave yellow crystals (70% yield), m.p. > 360°C; IR (KBr) ν (cm–1): 3450–3370 (NH2, NH), 1665 (exocyclic C=N), 1650 (C=C); 1H NMR (DMSO-d6) δ (ppm): 5.32 (s, 4H, 2NH2), 7.36–7.48 (m, 20H, 4C6H5), 8.10–8.30 (m, 3H, pyr-H), 8.45 (s, 2H, 2NH); MS: m/z =719 [M+]; Anal. Calcd. for C37H29N13S2 (719.86): C, 61.74; H, 4.06; N, 25.29; S, 8.91. Found: C, 61.75, H, 4.04; N, 25.3; S, 8.90.

2,6-Bis[3-amino-1[H]-5-(3',5'-diaminopyrazol-4'-ylidino) pyrazolo [4,5-d]thiazol-N-yl] pyridine (20): Crystallization from ethanol gave white crys-tals (68% yield), m.p. > 360°C; IR (KBr) ν (cm–1): 3460–3370 (NH2, NH), 1660 (C=N), 1655 (C=C); 1H NMR (DMSO-d6) δ (ppm): 5.31, 5.36, 7.42 (3s, 12H, 6NH2), 8.10–8.30 (m, 3H, pyr-H), 8.41 (s, 2H, 2NH); MS: m/z = 547 [M+]; Anal. Calcd. for C19H17N17S2 (547.59): C, 41.68; H, 3.13; N, 43.48; S, 11.71. Found: C, 41.65; H, 3.14; N, 43.52; S, 11.69.

2,6-Bis-[3-amino-1-phenyl-5-(3'-amino-5'-imino-1'-phenylpyrazolo-4'-ylidino) pyrazolo[4,5-d] thiazol-N-yl] pyridine (21): Crystallization from dioxane gave pale brown crystals (74% yield), m.p. > 360°C; IR (KBr) ν (cm–1): 3460–3365 (NH2, NH), 1670 (exocyclic C=N), 1660 (C=N), 1645 (C=C); 1H NMR (DMSO-d6) δ (ppm): 4.82, 5.45 (2s, 8H, 4NH2), 7.30–7.46 (m, 20H, 4C6H5), 8.10–8.30 (m, 3H, pyr-H), 8.33 (s, 2H, 2NH); MS: m/z = 851 [M+]; Anal. Calcd. for C43H33N17S2 (851.94): C, 60.62; H, 3.90; N, 27.95; S, 7.53. Found: C, 60.60; H, 3.91; N, 27.99; S, 7.50.


N. I. Abdel-Sayed: Novel synthesis of new symmetrical bis-heterocyclic compounds …



2,6-Bis-(2-hydrazono-4-phenylthiazol-N-yl)pyri-dine (22a): Crystallization from dioxane gave buff crystals (75% yield), m.p. 125°C; IR (KBr) ν (cm–1): 3460 (NH2), 1665 (exocyclic C=N), 1650 (C=C); 1H NMR (DMSO-d6) δ (ppm): 6.35 (s, 4H, 2NH2), 6.37 (s, 2H, thiazolyl H-5), 7.32–7.37 (m, 10H, 2C6H5), 8.10–8.30 (m, 3H, pyr-H); MS: m/z = 457 [M+]; Anal. Calcd. for C23H19N7S2 (457.59): C, 60.37; H, 4.19; N, 21.43; S, 14.01. Found: C, 60.39; H, 4.17; N, 21.55; S, 13.89.

2,6-Bis-(2-phenylhydrazono-4-phenylthiazol-N-yl) pyridine (22b): Crytallization from dioxane gave pale yellow crystals (73% yield), m.p. 120°C; IR (KBr) ν (cm–1): 3460–3375oC (NH), 1665 (exo-cyclic C=N), 1650 (C=C); 1H NMR (DMSO-d6) δ (ppm): 6.37 (s, 2H, thiazolyl H-5), 7.32–7.48 (m, 20H, 4C6H5), 8.10–8.30 (m, 3H, pyr-H), 8.33 (s, 2H, 2NH); MS: m/z = 609 [M+]; Anal. Calcd. for C35H27N7S2 (609.78): C, 68.94; H, 4.46; N, 16.08; S, 10.52. Found: C, 68.97; H, 4.44; N, 16.10, S, 10.49.

2,6-Bis-(2-dicyanomethino-4-phenylthiazol-N-yl) pyridine (23): To a solution of 6 (4.61 g, 0.01 mol) in 30 ml of DMF, (1.32 ml, 0.02 mol) of malono-nitrile was added. The mixture was heated under reflux for 6 h (till the evolution of H2S was ceased). The solid product formed upon pouring into water was collected by filtration. Crystallization from dioxane gave brown crystals (80% yield), mp 145°C; IR (KBr) ν (cm–1): 2225–2220 (CN), 1655 (C=C); 1H NMR (DMSO-d6) δ (ppm): 6.34 (s, 2H, thiazolyl H-5), 7.34–7.45 (m, 10H, 2C6H5), 8.10–8.30 (m, 3H, pyr-H); MS: m/z = 525 [M+]; Anal. Calcd. for C29H15N7S2 (525.62): C, 66.27; H, 2.88; N, 18.65; S, 12.20. Found: C, 66.28; H, 2.87; N, 18.66; S, 12.19.

General procedure for the synthesis of compounds 24 and 25

To a solution of 23 (5.01 g, 0.01 mol) in 40 ml of dioxane, hydrazine hydrate or phenyl hydrazine (0.02 mol) was added. The reaction mixture was heated under reflux for 3–4 h, then left to cool. The solid product formed upon standing was collected by filtration.



2,6-Bis-[2-(3',5'-diaminopyrazolo-4'-ylidino)-4-phenyl thiazol-N-yl] pyridine (24): Crystallization from DMF gave white crystals (70% yield), m.p. 323°C; IR (KBr) ν (cm–1): 3465 (NH2), 1645 (C=C), 1660 (C=N); 1H NMR (DMSO-d6) δ (ppm): 4.44, 5.03 (2s, 8H, 4NH2), 6.42 (s, 2H, thiazolyl H-5), 7.35–7.58 (m, 10H, 2C6H5), 8.10–8.30 (m, 3H, pyr-H); MS: m/z = 589 [M+]; Anal. Calcd. for C29H23N11S2 (589.71): C, 59.07; H, 3.93; N, 26.13; S, 10.87. Found: C, 59.05; H, 3.94; N, 26.17; S, 10.84.


N. I. Abdel-Sayed: Novel synthesis of new symmetrical bis-heterocyclic compounds …



2,6-Bis-[2-(3'-amino-5'-imino-1'-phenylpyrazolo-4'-ylidino)-4-phenylthiazol-N-yl] pyridine (25): Crystallization from ethanol afforded pale yellow crystals (65% yield), m.p. > 360°C; IR (KBr) ν
(cm–1): 3465, 3390 (NH2, NH), 1660 (C=N), 1645 (C=C); 1H NMR (DMSO-d6) δ (ppm): 4.43 (s, 4H, 2NH2), 6.43 (s, 2H, thiazolyl H-5), 7.30–7.64 (m, 20H, 4C6H5), 8.10–8.30 (m, 3H, pyr-H), 8.37 (s, 2H, 2NH); MS: m/z = 741 [M+]; Anal. Calcd. for C41H31N11S2 (741.91): C, 66.38; H, 4.21; N, 20.77; S, 8.64. Found: C, 66.40; H, 4.20; N, 20.80; S, 8.60.

References



  1. R. M. Mohareb, S. M. Sherif, F. A. M. Abdel-Aal, N. I. Abdel-Sayed, Leibigs Ann. Chem, 1143 (1990).

  2. N. I. Abdel-Sayed, Women's College Ann. Rev., 16, 12 (1991).

  3. R. M. Mohareb, N. I. Abdel-Sayed, S. M. Sherif, Phosphorus, Sulfur and Silicon, 63, 119 (1991).

  4. R. M. Mohareb, S. I. Aziz, N. I. Abdel-Sayed, H. Z. Shams, J. Chin. Chem. Soc., 39, 181 (1992).

  5. R. M. Mohareb, N. I. Abdel-Sayed, Collect. Czech. Chem. Commun., 57, 1758 (1992).

  6. R. M. Mohareb, S. M. Sherif, A. Habashi, N. I. Abdel-Sayed, S. S. Osman, Collect. Czech. Chem. Commun., 60, 1578 (1995).

  7. S. M. Sherif, N. I. Abdel-Sayed, S. M. El Kousy, R. M. Mohareb, Monatsh. Chem., 126, 601 (1995).

  8. R. M. Mohareb, Y. M. Elkholy, N. I. Abdel-Sayed, Phosphorus, Sulfur and Silicon, 106, 193 (1995).

  9. R. M. Mohareb, S. I. Aziz, N. I. Abdel-Sayed, A. H. El-Banna, J. Chem. Res., (S) 10 (1999); Ibid., (M) 0101 (1999).

  10. N. I. Abdel-Sayed, Egypt. J. Chem., 42, 175 (1999).

  11. P. Nussbaumer, G. Petranyi, A. Stutz, J. Med. Chem., 34, 65 (1991).

  12. N. J. P. Broom, J. S. Elder, P. C. T. Hannan, J. E. Pons, P. J. O'Hanlon, G. Walker, J. Wilson, P. Woodall, J. Antibiotic, 48, 1336 (1995).

  13. M. Nakanishi, H. Imamura, Y. Maruyama, H. Hoshino, J. Pharm. Soc. Jpn, 90, 272 (1970).

  14. D. Briel, Pharmazie, 45, 236 (1995).

  15. M. Yamaguchi, N. Maruyama, T. Koga, K. Kamei, M. Akima, T. Kuroki, M. Hamana, N. Ohi, Chem. Pharm. Bull., 43, 236 (1995).

  16. R. E. Boyd, J. B. Press, C. R. Rasmussen, R. B. Raffa, E. E. Codd, C. D. Connelly, Q. S. Li, R. P. Martinez, M. A. Lewis, B. J. Almond, J. Med. Chem., 44, 863 (2001).

  17. M. T. Cocco, C. Congiu, V. Onnis, J. Heterocyclic Chem., 32, 463 (1995).

Нови синтези на нови симетрични бис-хетероциклени съединения:


синтез на бис-тиазол-, бис-пиразол-, бис-бензотриазол-, бис-индол-
и бис-пиразолилтиазол-2,6-диаминпиридинови производни

Н. И. Абдел-Сайед



Департамент по химия, Девически факултет по изкуства, наука и образование, Университет Айн Шамс, Хелиополис, п.к. 11757, Кайро, АР Египет

Постъпила на 25 декември 2008 г.; Преработена на 8 юни 2009 г.



При реакция на 2,6-диаминопиридин с хлорацетилхлорид се получава 2,6-бис-(2-хлорацетамид-N-ил)пиридин. Реакцията на продукта поотделно с KCl, KSCN, индол и бензотриазол води съответно до 2,6-бис-(цианацетамид-N-ил)пиридин (продуктът при купелуване с бензендиазониев хлорид дава бис-цианфенил-хидразоновото производно и чрез дестилация на последното съединение с обратен хладник и хлорацетонитрил се получава 2,6-диамин-5-циан-1-фенилпиразол-3-ил)пиридин), 2,6-бис-(тиоцианат ацетамид-N-ил)пиридин, 2,6-бис-[2-(1[Н]-индол-3-ил)ацетамид-N-ил]пиридин и 2,6-бис-[2-(1,2,3-бензотриазол-1-ил)ацетамид-N-ил)пи-ридин. Ацетилиране на 2,6-диаминопиридин с оцетен анхидрид води до 2,6-бис-(ацетамид-N-ил)пиридин, който при купелуване с бензендиазониев хлорид дава бис-фенилхидразоново производно. При реакцията на последното с хлорацетонитрил се получава 2,6-диамино-бис-(5-циан-1-фенил-пиразол-N-ил)пиридин. В алкална среда реакцията на 2,6-диаминопиридин с CS2 последвана поотделно с етил-α-бромцианоацетат и фенацил-бромид дава съответно 2,6-бис-(5-циан-4-хидрокси-тиазол-3-ил-2-тионил)пиридин и 2,6-бис-(4-фенил-тиазол-3-ил-2-тионил)пиридин. При кондензация на получените съединения поотделно с малононитрил се получават дицианметинтиазолови производни. При реакция на хидразинхидрат или фенилхидразин с тиазолилтионови производни или с дицианметинтиазолови производни води съответно до хидразонтиазолови и пиразолови производни.




Каталог: bcc volumes -> Volume 42 Number 1 2010 -> Volume 42 Number 1 2010 DOC
bcc volumes -> Bulgarian Chemical Communications, Volume 40, Number 4 (pp. 464-468) 2008
bcc volumes -> Bulgarian Chemical Communications, Volume 41, Number 2 (pp. 133-137) 2009
bcc volumes -> Bulgarian Chemical Communications, Volume 40, Number 4 (pp. 397-400) 2008
bcc volumes -> Bulgarian Chemical Communications, Volume 46, Number 2 (pp. 330 333) 2014
bcc volumes -> Bulgarian Chemical Communications, Volume 44, Number 4 (pp. 307 309) 2012
bcc volumes -> Bulgarian Chemical Communications, Volume 47, Number 2, 2015
bcc volumes -> Bulgarian Chemical Communications, Volume 44, Number 4 (pp. 283 288) 2012
Volume 42 Number 1 2010 DOC -> N. I. Abdel-Sayed, Novel synthesis of new symmetrical bis-heterocyclic compounds: Synthesis of bis-thiazolo, bis-pyrazolo-, bis-benzotriazolo-, bis-indolo- and bis-pyrazolyl thiazolo-2,6-diamino-pyridine derivat
Volume 42 Number 1 2010 DOC -> Bulgarian Chemical Communications, Volume 42, Number 1 (pp. 51- 54) 2010
Volume 42 Number 1 2010 DOC -> Bulgarian Chemical Communications, Volume 42, Number 1 (pp. 36-39) 2010


Сподели с приятели:




©obuch.info 2024
отнасят до администрацията

    Начална страница