Първа част всяка задача има само един верен отговор. „Друг отговор” се приема за решен, само ако е отбелязан верният резултат. Задачите се оценяват с по 2 точки



Дата23.10.2018
Размер28.85 Kb.
СМБ Секция „РУСЕ”

ВЕЛИКДЕНСКО МАТЕМАТИЧЕСКО СЪСТЕЗАНИЕ 24. 04 2010

12 клас

Време за решаване 120 минути. Организаторите Ви пожелават успех!


Име ............................................................................Училище ................................... Град .......................
ПЪРВА ЧАСТ

Всяка задача има само един верен отговор. „Друг отговор” се приема за решен, само ако е отбелязан верният резултат. Задачите се оценяват с по 2 точки.

1. Ако a >0 и А = , В = , то частното А:В е равно на:


а) ; б) а; в) а2; г) друг отговор.

2. Решенията на неравенството > 2 са:


а) x(1, 2); б) x(- ∞, 1)(1, 2); в) x(- ∞, 2); г) друг отговор.

3. Произведението от корените на уравнението х + = 2, където m≠│n│е:


а) 2; б) m+n; в) 1; г) друг отговор.

4. Корените на уравнението (x2 – 4x+4)2 + (x-2)2 -2=0 са:


а) 6; 1; б) 3; -1; в) 6; 3; г) друг отговор.

5. Корените на уравнението са:


а) 6; б) 3; в) 6 и 3; г) друг отговор.
6. Дадена е аритметичната прогресия 3, 6, 9.... Ако an =120 е член на прогресията с номер n, то n е равно на:
а) 50; б) 38; в) 40; г) друг отговор.

7. Ако α  и sinα =12/13, то стойността на cosα е:


а) -5/13; б) 1; в) 5/13; г) друг отговор.

8. Даден е ромбът ABCD и точката MAB такава, че AM:MB=3:2. Ако АС пресича DM в точката N, то отношението MN:ND е равно на:


а) 3:5; б) 2:3; в) 1:2; г) друг отговор.

9. В правоъгълен триъгълник медианите към катетите са равни на и . Дължината на хипотенузата е равна на:


а) 5; б) 6; в) 12; г) друг отговор.

10. Точка О е център на описаната около триъгълника ABC окръжност. Ако АО = R и ACB = , >900, то лицето на триъгълника AOB е равно на:


а) R2sin2; б) 1/2R2sin2; в) –R2sin2; г) друг отговор.

11. Диагоналите на равнобедрен трапец са перпендикулярни помежду си. Ако височината на трапеца е 8см, то лицето му е равно на:


а) 64 см2; б) 32 см2; в) 16 см2; г) друг отговор.

12. Най-малкият корен на уравнението (log3x)2 – log3x = 2 е равен на:


а) 1/9; б) 9; в) 1/3; г) друг отговор.

ВТОРА ЧАСТ.

Следващите задачи са със свободен отговор, който трябва да се запише.

Задачите се оценяват с по 3 точки.
13. Да се реши неравенството <1 Отговор:.............................

14. Към вписаната в равнобедрения триъгълник ABC окръжност е построена допирателна MN (MAC, NBC), успоредна на основата AB. Точката М разделя бедрото АС на отсечки с дължини 1см и 2 см, считано от основата. Да се намери дължината на MN в сантиметри.

Отговор: ..............................

ТРЕТА ЧАСТ

На следващите три задачи трябва да се опише подробно решението.

Задачите се оценяват с по 10 точки.

15. Ако tg = 1/5, да се намери стойността на израза А = .

16. Да се реши системата

17. Дадена е окръжност k с център О и радиус R. Даден е диаметърът CD на k и хорда AB, успоредна на CD. Върху диаметъра или на продължението му е взета точка М. Да се докаже, че сумата AM2 + BM2 не зависи от положението на хордата при дадено положение на точката М.


ВАЖНО! Награждаване на първенците e на 27. 04. 2010 от 17.30 часа в МГ”Баба Тонка”-Русе

Очаквайте класиране и отговорите на задачите на http://smb-ruse.com или http://cutnt-ruse.com



ВМС 24.04.2010 12 клас Отговори:

1 – б; 2 – а; 3 – в; 4 – г x1 = 3, x2 = 1; 5 – б; 6 – в; 7 – а; 8 – а; 9 – г 10; 10 – г -1/2R2sin2; 11 – а; 12 – в;

13 – x  (-∞, -2)  (-1, 2)  (2, ∞); 14 – MN = 0,8 см; 15 – A = 13/14.

16. От първото уравнение на системата изваждаме второто и записваме


Получаваме системите и Решенията на първата система са x1 = 1, y1 = 2 и x1 = 2, y2 = 1, а на втората x3 = -1, y3 = -2 и x4 = -2, y4 = -1.

17. Съгласно косинусовата теорема за триъгълниците BOM и AOM имаме BM2 = R2 + OM2 – 2R.OM.cos BOM, AM2 = R2 + OM2 – 2R.OM.cos BOM. Оттук AM2 + BM2 = 2(R2 + OM2). Следователно AM2 + BM2 не зависи от положението на хордата AB при дадено положение на точката М.


Поделитесь с Вашими друзьями:


База данных защищена авторским правом ©obuch.info 2019
отнасят до администрацията

    Начална страница