Bulgarian Chemical Communications, Volume 42, Number 4 (pp. 343 348) 2010



Дата26.09.2018
Размер220.34 Kb.
#82801


Bulgarian Chemical Communications, Volume 42, Number 4 (pp. 343 – 348) 2010

Evaluation of PCB’s chromatographic retention indices using multilinear regression method

I. Stanculescu1,2*, G. Mindrila1, C. Mandravel1


  1. Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., District 3, Bucharest, 030018 Romania

  2. IRASM Irradiation Technology Center, Horia Hulubei National Institute for Physics and Nuclear Engneering, 407 Atomistilor St, Magurele, Ilfov, 077125 Romania

Received August 6, 2010; Revised September 14, 2010

The multilinear regression method for polychlorinated biphenyls (PCBs) chromatographic retention indices evaluation was applied. Nine reference PCB's chromatographic retention indices (R) were evaluated using 8 calculated molecular properties (descriptors): molecular volume, molecular weight, partition coefficient (logP), van der Waals and solvent accessible surface, dipole moment, and frontier orbital energies. The best equations were selected via the highest value of the F quality index and the most efficient combinations of descriptors. As expected, the van der Waals surface descriptor appears frequently in the best quality equations. In the discussed equations, the logP descriptor, correlated with the lipophilicity and the reactivity indices of εHOMO and εLUMO, has the biggest weight.



Keywords: PCBs; chromatographic retention indices; multilinear regression method; molecular descriptors

INTRODUCTION

Although the production of polychlorobiphenils (PCBs) is forbidden now, the problems of their recurrence in the environmental components are an issue due to the partitioning, biotransformation and bioaccumulation [1–11] of these hazardous chemicals. In these processes, the PCB adsorption in different phases [1–3] is very important.

There are 209 PCB's congeners and their identification is a very difficult task. Such identification is possible trough determination of their retention times using the high resolution gas-chromotography [12–14].

The content of PCBs in transformers oil have been evaluated by GC–MS hyphenated method [15]. Now the chromatographic retention indices were evaluated using the multiple linear regression method (MLR).


* To whom all correspondence should be sent:
E-mail: ioana.stanculescu@gmail.com


© 2010 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria

We adhered to the following equation:

(1)


MLR attempts to model the correlation between the chromatographic retention index R and the independent variables xi (descriptors), mediated by a0 - ai which are estimated regression parameters. Recently, B. Tiperciuc and C. Sarbu predicted the chromatographic retention indices (lipophilicity) of some new methyl thiazolil oxadiazoline derivatives using the MLR [16].

CALCULATION DETAILS

Chromatographic retention index values of the PCBs are taken from two literature sources [17, 18]. The molecular weight is considered as a descriptor of a special type because the toxicity and the irreversible absorption increase with the complexity of its structure [12–14]. The molecular properties of the PCBs, the grid (solvent accessible) surface (Sg), the approximate (van der Waals) surface (Sa), the molecular volume (V), the dipole moment (μ), the partition coefficient (logP), the and frontier orbital energies (εHOMO, εLUMO) were calculated for structures, optimized with the AM1 method in the Restricted Hartree Fock (RHF) approximation in vacuo, using the HYPERCHEM software [19]. Minimum energy structures were obtained using the Root Mean Square (RMS) gradient of 0.01 kcal/mol·Å. Multilinear regression equations were derived trough the MATHCAD 7 software [20].

RESULTS and DISCUSSION

In our study, we considered as descriptors the properties on molecular level such as the molecular volume and weight. We also took into consideration the properties significant for the energy of the molecular interaction: the partition coefficient, van der Waals and solvent accessible surface, and some properties, related to the nuclear-electronic level such as the dipole moment and frontier orbital energies.

These descriptors can serve as a basis for the development of predictive models with improved accuracy and precision [21].

A set of 9 PCBs are included in this study: 1(1), 8(2), 31(3), 44(4), 101(5), 138(6), 180(7), 203(8) and 206(9). The bold characters indicate the compound in accordance with IUPAC Convention and the number of the chlorine atoms is given in the brackets [13, 14, 17, 22]. In this series, the PCB1 elutes first, and the PCB206 elutes last on almost every stationary phase, tested as showed in a 2008 research report of the LECO Corporation [18]. We assumed that these nine PCBs are representative for the multilinear regression study for two reasons: (i) it is considered one PCB of each of the nine classes and (ii) these nine PCB’s were proposed as reference compounds because they exhibit linear retention behavior on stationary phases [18]. For example, the regression of the PCB reference series (the retention time versus the chlorine atom number) demonstrates that the behavior is linear for the DB-XLB phase [12–14].

The CAS registry numbers, the retention indices (RT1 and RT2), and the descriptor values, calculated as described in the calculation detail paragraph, are listed in Table 1. This table shows an increase in the property values and the number of the chlorine atoms in the PCB molecules.



Table 1. PCB CAS numbers, calculated molecular properties and chromatographic retention indices.

No.

PCB (Cl position)

CAS number

M (g/mol)

logP

εHOMO (eV)

εLUMO (eV)

Sg(Å2)

Sa(Å2)

V(Å3)

m(D)

RT 1

RT 2




1 (2)

2051-60-7

188.66

4.25

9.5023

0.1206

377.27

302.9

589.26

1.160

364.49

2.036




8 (2,4’)

34883-43-7

223.1

4.77

-9.5698

-0.2036

401.05

339.32

631.79

1.402

568.09

2.885




31 (25,4’)

16606-02-3

257.55

5.29

-9.5645

-0.3201

425.68

376.22

675.33

1.043

767.41

4.04




44 (23,2’5’)

41464-39-5

326.44

5.8

-9.5582

-0.3265

438.46

390.02

706.13

1.880

874.29

4.655




101 (245,2’5’)

37680-73-2

291.99

6.32

-9.6378

-0.5953

465.35

428.94

749.93

1.102

1026.68

5.396




138 (234,2’4’5’)

35065-28-2

360.88

6.84

-9.7085

-0.6671

480

458.46

783.3

1.643

1270.29

6.677




180 (2345,2’4’5’)

35065-29-3

395.33

7.36

-9.7703

-0.8302

501.61

492.81

821.63

0.845

1414.49

7.412




203 (23456,2’4’5’)

52663-76-0

429.77

7.88

-9.7548

-0.9909

511.93

510.52

851.71

0.03

1494.29

7.763




206 (23456,2’3’4’5’

40186-72-9

464.22

8.39

-9.8484

-1.0539

527.61

540.27

884.83

0.820

1669.89

8.642

Taking into account only the combinations with Sa or Sg, 183 equations were derived for each of the retention index series: 27 equations with 2 descriptors, 50 with 3 descriptors, 55 with 4 descriptors, 36 with 5 descriptors, 13 with 6 descriptors, and 2 with 7 descriptors. In tables 2 and 3, according to then F values, the best 10 equations with 2-6 descriptors were selected for each of the index series, and the best 2 equations with 7 descriptors were selected for each of the retention index series.

In practical terms, the MLR equations of Tables 2 and 3, were evaluated by values of correlation coefficient r2, F factor, and p value(the equation significance level. The correlation coefficient r2 is 0.999 for all equations. The F factor which is the measure of the regression relationship, was calculated with the formula: , where MSR is mean square regression, and MSE is mean square error [24]. An examination of Tables 2 and 3 shows that the same combinations of 6 descriptors (M, logP, ELUMO, Sa, V, μ), 5 descriptors (M, logP, ELUMO, Sa, μ) and 3 descriptors (ELUMO, Sa, μ ) give the biggest F value (see lines 12, 22 and 42 in the tables 2 and 3). The quality of the obtained equations was good, taking into consideration the r2 and F values. Additionally, the calculated p values (data not shown) are very small for the high quality obtained equations. As expected, M, , Sa, and logP descriptors are the most frequently used descriptors in the best equations, with highest F factor. Even equations with 2 descriptors have highest F values when Sa and  are used as descriptors.



Surely, the weight of a descriptor is determined by the value of the ai coefficients. Thus, in Table 2, in the equations with 5, 6 and 7 descriptors, logP has the biggest weight almost always and the εHOMO descriptor has the second biggest weight. LogP has the biggest weight 4 times and εLUMO 5 times in the case of 4 descriptor equations. The biggest weight for the equations with 3 descriptors corresponds to εLUMO for half of the equations, and for 3 equations to μ, logP, and εHOMO. The biggest weight varies for the equations with 2 descriptors. We have similar comments about Table 3, and one may see that the M descriptor is never of the biggest weight.

Table 2. Multilinear regression equations, obtained using RT1 (r2=0.999).

No.

Descriptors (Xi)

F

Coefficients (ai)




7 descriptors







1

M, logP, EHOMO, ELUMO, Sg, V, μ

6.247E+4

-2.475E+4; -123.183; 7.236E+3; -894.756; 368.737; -23.36; 30.238; 39.314

2

M, logP, EHOMO, ELUMO, Sa, V, μ

1.265E+5

-1.207E+4; -124.437; 8.464E+3; 77.901; 146.13; 5.715; -1.952; 72.107




6 descriptors







3

logP, EHOMO, ELUMO, Sg, V, μ

1.919E+3

-1.986E+4; -1.932E+3; -1.38E+3; 445.058; -43.617; 53.861; -11.478

4

M, logP, ELUMO, Sg, V, μ

2.057E+3

-1.86E+4; -185.356; 1.29E+4; 84.216; 10.622; -8.514; 85.615

5

M, logP, EHOMO, Sg, V, μ

2.648E+3

-1.853E+4; -141.438; 9.493E+3; -363.543; -0.93; 3.453; 73.595

6

M, EHOMO, ELUMO, Sg, V, μ

3.101E+3

-2.222E+4; -28.453; -1.352E+3; 466.216; -43.289; 53.27; -3.421

7

M, logP, EHOMO, ELUMO, Sg, μ

4.219E+3

-2.09E+4; -165.311; 1.121E+4; -355.324; 169.036; 3.517; 73.036

8

M, logP, EHOMO, ELUMO, Sa, μ

4.372E+4

-1.464E+4; -131.66; 8.889E+3; -74.275; 176.453; 4.164; 69.082

9

M, logP, EHOMO, ELUMO, Sg, V

5.293E+3

-2.524E+4; -68.681; 2.798E+3; -1.283E+3; 522.517; -40.684; 50.528

10

M, logP, EHOMO, ELUMO, V, μ

5.51E+3

-2.143E+4; -158.192; 1.057E+4; -436.346; 206.675; 4.192; 67.217

11

M, logP, EHOMO, Sa, V, μ

1.026E+4

-8.177E+3; -107.624; 7.423E+3; 244.702; 6.936; -4.376; 77.831

12

M, logP, ELUMO, Sa, V, μ

9.087E+4

-1.328E+4; -127.564; 8.65E+3; 156.964; 5.041; -1.163; 71.097




5 Descriptors







13

M, logP, ELUMO, Sg, μ

1.775E+3

-1.877E+4; -179.604; 1.221E+4; 119.102; 2.709; 78.422

14

logP, EHOMO, ELUMO, Sg, V

1.8E+3

-1.805E+4; -1.672E+3; -1.262E+3; 363.264; -37.918; 47.156

15

logP, EHOMO, Sa, V, μ

1.844E+3

4.146E+3; 211.043; 439.95; 10.58; -6.387; 50.514

16

M, logP, Sg, V, μ

1.92E+3

-1.752E+4; -177.493; 1.244E+4; 11.573; -10.107; 88.477

17

M, logP, EHOMO, Sg, μ

2.61E+3

-1.843E+4; -148.515; 1.01E+4; -308.293; 2.303; 76.921

18

M, logP, EHOMO, V, μ

2.645E+3

-1.849E+4; -143.297; 9.654E+3; -348.053; 2.47; 74.479

19

M, EHOMO, ELUMO, Sg, V

3.063E+3

-2.169E+4; -27.514; -1.324E+3; 441.677; -41.958; 51.661

20

M, logP, EHOMO, Sa, m

5.033E+3

-1.349E+4; -118.896; 8.054E+3; -110.175; 3.019; 72.287

21

M, logP, Sa, V, m

7.475E+3

-1.159E+4; -114.647; 7.832E+3; 4.759; -2.097; 75.648

22

M, logP, ELUMO, Sa, μ

2.754E+4

-1.389E+4; -130.726; 8.822E+3; 182.972; 4.374; 68.106




4 descriptors







23

M, ELUMO, Sa, μ

1.423E+3

-1.559E+3; -0.036; 117.365; 6.207; 32.731

24

logP, ELUMO, Sa, μ

1.423E+3

-1.549E+3; 0.402; 115.411; 6.149; 32.804

25

EHOMO, ELUMO, Sa, μ

1.434E+3

-1.968E+3; -46.539; 112.788; 6.078; 33.181

26

M, logP, V, μ

1.458E+3

-1.743E+4; -168.106; 1.139E+4; 1.702; 81.196

27

ELUMO, Sa, V, μ

1.472E+3

-1.417E+3; 117.902; 7.008; -0.668; 34.308

28

M, Sa, V, μ

1.473E+3

-714.62; 1.296; 6.894; -2.213; 42.352

29

logP, Sa, V, μ

1.5E+3

-808.741; 93.232; 6.9; -2.315; 42.992

30

M, logP, EHOMO, μ

1.526E+3

-2.096E+4; -186.295; 1.27E+4; -250.549; 92.171

31

M, logP, Sg, μ

1.565E+3

-1.716E+4; -165.901; 1.129E+4; 1.898; 80.748

32

M, logP, Sa, μ

4.37E+3

-1.23E+4; -116.773; 7.907E+3; 3.273; 70.992




3 descriptors







33

EHOMO, ELUMO, Sa

765.695

-1.487E+3; 14.667; 218.625; 6.557

35

ELUMO, Sa, V

765.812

-1.642E+3; 216.891; 6.383; 0.116

35

logP, ELUMO, Sa

771.36

-1.659E+3; -19.33; 229.507; 6.927

36

M, ELUMO, Sa

771.432

-1.686E+3; -0.289; 229.992; 6.927

37

M, logP μ

1.205E+3

-1.952E+4; -195.322; 1.332E+4; 93.133

38

M, Sa, μ

1.274E+3

-1.348E+3; 0.233; 5.347; 37.097

39

logP, Sa, μ

1.278E+3

-1.367E+3; 18.117; 5.301; 37.173

40

EHOMO, Sa, μ

1.279E+3

-1.978E+3; -65.106; 5.527; 37.5

41

Sa, V, μ

1.295E+3

-1.262E+3; 6.396; -0.618; 38.587

42

ELUMO, Sa, μ

1.423E+3

-1.55E+3; 115.684; 6.157; 32.792




2 descriptors







43

M, V

396.399

-2.466E+3; -0.699; 5.034

44

EHOMO, Sg

417.698

-7.811E+3; -570.231; 7.312

45

V, μ

467.245

-2.289E+3; 4.451; 25.281

46

EHOMO, V

502.724

-5.92E+3; -420.719; 3.909

47

EHOMO, Sa

599.557

-1.371E+3; -8.739; 5.477

48

logP, Sa

601.981

-1.274E+3; 15.222; 5.223

49

M, Sa

602.332

-1.251E+3; 0.241; 5.209

50

Sa, V

603.079

-1.38E+3; 4.967; 0.418

51

ELUMO, Sa

765.373

-1.619E+3; 218.096; 6.533

52

Sa, μ

1.262E+3

-1.388E+3; 5.618; 37.107

Table 3. Multilinear regression equations, obtained using RT2 (r2=0.999).

No.

Descriptors (Xi)

F

Coefficients (ai)




7 descriptors







1

M, logP, EHOMO, ELUMO, Sa, V, m

4.288E+4

-80.928; -0.727; 48.587; 1.601E-3; 2.202; 0.023; 0.01; 0.327

2

M, logP, EHOMO, ELUMO, Sg, V, m

1.628E+6

-133.123; -0.704; 41.968; -4.11; 3.173; -0.105; 0.152; 0.182




6 descriptors







3

M, EHOMO, ELUMO, Sa, V, μ

1.401E+3

9.29; 2.74E- 3; 1.763; 1.564; 0.049; -0.011; 0.181

4

logP, EHOMO, ELUMO, Sa, V, μ

1.414E+3

11.499; 0.283; 1.957; 1.519; 0.05; -0.013; 0.189

5

logP, EHOMO, ELUMO, Sg, V, μ

1.604E+3

-105.191; -10.407;-6.882; 3.609; -0.221; 0.287; -0.108

6

M, EHOMO, ELUMO, Sg, V, μ

2.563E+3

-118.467; -0.154; -6.759; 3.738; -0.221; 0.286; -0.066

7

M, logP, ELUMO, Sg, V, μ

2.665E+3

-104.887; -0.989; 67.99; 1.866; 0.051; -0.026; 0.395

8

M, logP, EHOMO, ELUMO, Sg, μ

4.725E+3

-113.808; -0.915; 61.954; -1.398; 2.169; 0.03; 0.351

9

M, logP, EHOMO, ELUMO, Sg, V

7.122E+3

-135.402; -0.452; 21.434; -5.904; 3.884; -0.185; 0.246

10

M, logP, EHOMO, ELUMO, V, μ

7.856E+3

-118.196; -0.861; 56.976; -2.046; 2.443; 0.035; 0.307

11

M, logP, EHOMO, ELUMO, Sa, μ

2.562E+4

-67.387; -0.689; 46.348; 0.804; 2.042; 0.031; 0.343

12

M, logP, ELUMO, Sa, V, μ

4.288E+4

-80.952; -0.727; 48.591; 2.202; 0.023; 0.01; 0.327




5 descriptors







13

logP, ELUMO, Sa, V, μ

1.265E+3

-11.204; -0.317; 1.742; 0.035; 6.255E-3; 0.144

14

M, ELUMO, Sa, V, μ

1.283E+3

-11.962; -5.351E-3; 1.772; 0.035; 7.057E-3; 0.142

15

logP, EHOMO, ELUMO, Sg, V

1.353E+3

-88.117; -7.953; -5.769; 2.837; -0.167; 0.224

16

logP, EHOMO, ELUMO, Sa, μ

1.358E+3

-1.124; -0.138; 0.942; 1.699; 0.041; 0.156

17

M, EHOMO, ELUMO, Sa, μ

1.366E+3

-1.307; -2.274E-3; 0.949; 1.711; 0.041; 0.156

18

EHOMO, ELUMO, Sa, V, μ

1.392E+3

4.331; 1.393; 1.652; 0.046; -5.583E-3; 0.168

19

M, logP, ELUMO, V, μ

2.033E+3

-106.309; -0.962; 64.299; 2.005; 0.027; 0.359

20

M, EHOMO, ELUMO, Sg, V

2.245E+3

-108.184; -0.136; -6.218; 3.265; -0.195; 0.255

21

M, logP, ELUMO, Sg, μ

2.485E+3

-105.401; -0.972; 65.873; 1.972; 0.027; 0.373

22

M, logP, ELUMO, Sa, μ

1.016E+4

-75.479; -0.699; 47.067; 1.972; 0.029; 0.353




4 descriptors







23

logP, EHOMO, ELUMO, Sa

812.951

1.334; -0.246; 1.276; 2.26; 0.045

24

M, EHOMO, ELUMO, Sa

813.658

1; -3.679E-3; 1.278; 2.267; 0.045

25

M, logP, Sg, μ

843.345

-78.743; -0.745; 50.74; 0.013; 0.411

26

logP, ELUMO, Sa, V

893.939

-14.44; -0.756; 2.342; 0.032; 0.017

27

M, ELUMO, Sa, V

902.636

-15.695; -0.012; 2.367; 0.031; 0.017

28

M, logP, Sa, m

1.059E+3

-58.29; -0.549; 37.212; 0.017; 0.385

29

ELUMO, Sa, V, m

1.21E+3

-9.405; 1.545; 0.035; 5.677E-4; 0.166

30

logP, ELUMO, Sa, m

1.222E+3

-9.489; -0.094; 1.61; 0.038; 0.165

31

M, ELUMO, Sa, m

1.227E+3

-9.673; -1.616E-3; 1.622; 0.038; 0.165

32

EHOMO, ELUMO, Sa, m

1.324E+3

-1.454; 0.873; 1.601; 0.038; 0.16




3 descriptors







33

M, logP, μ

647.926

-95.341; -0.951; 64.991; 0.498

35

Sa, V, μ

699.133

-7.368; 0.027; 1.217E-3; 0.222

35

M, Sa, μ

708.933

-6.76; 2.104E-3; 0.027; 0.225

36

logP, Sa, μ

710.797

-6.944; 0.153; 0.026; 0.226

37

EHOMO, Sa, μ

715.451

-1.595; 0.609; 0.03; 0.221

38

logP, ELUMO, Sa

722.501

-10.037; -0.193; 2.183; 0.042

39

M, ELUMO, Sa

722.804

-10.316; -2.888E-3; 2.188; 0.042

40

ELUMO, Sa, V

723.541

-10.493; 2.024; 0.032; 4.362E-3

41

EHOMO, ELUMO, Sa

774.729

0.867; 1.168; 2.112; 0.04

42

ELUMO, Sa, μ

1.209E+3

-9.291; 1.546; 0.036; 0.167




2 descriptors







43

Sg, V

337.821

-12.167; 0.011; 0.017

44

EHOMO, V

349.881

-22.437; -1.267; 0.021

45

logP, Sa

379.717

-6.382; 0.136; 0.026

46

M, Sa

380.153

-6.172; 2.149E-3; 0.026

47

ELUMO, V

387.726

-13.962; 1.174; 0.027

48

EHOMO, Sa

389.388

1.989; 0.942; 0.03

49

Sa, V

393.198

-8.049; 0.019; 7.185E-3

50

V, μ

419.303

-11.779; 0.023; 0.165

51

Sa, μ

697.685

-7.12; 0.029; 0.225

52

ELUMO, Sa

703.095

-9.644; 2.069; 0.038

CONCLUSIONS

Good correlations of chromatographic retention indices for the 9 PCBs with molecular properties using multilinear regression were obtained. The best 10 combinations of 2, 3, 4, 5 and 6 descriptors from the group of 8 considered were determined for each retention index series according the values of the regression quality indices [23, 24].

In the majority of best equations with the biggest F value, the presence of Sa descriptor shows the importance of the molecular surface and stationary phase interaction.

The descriptors with the biggest weight are the logP, correlated with the lipophilicity, and the reactivity indices, εHOMO and εLUMO.



Acknowledgements: The authors would like to thank to Prof. G. Surpateanu from the University of Dunkerque, France for the generous computational resources made available for us. This work was funded by the ANCS, DELCROM and ARCON projects, contract no. 92-086/2008 and 92-083/2008, respectively.

REFERENCES



  1. R. Fuoco, M. P. Colombini, E. Samcova, Chromatographia, 36, 65 (1993).

  2. C. von Holst, A. Müller, E. Björklund, E. Anklam, Eur. Food. Res. Technol. 213, 154 (2001)

  3. F. Krokos, C.S. Creaser, C. Wright, J.R. Startin, Fresenius J. Anal. Chem. 357, 732 (1997)

  4. H. Steinwandter, Fresenius J. Anal. Chem. 343, 378 (1992)

  5. E. Sippola, K. Himberg, Fresenius J. Anal. Chem, 339, 510 (1991)

  6. A.N. Davies, R. Fobbe, R. Kuckuk, J. Nolte, Fresenius J. Anal. Chem. 371, 855 (2001)

  7. V. Raverdino, R. Holzer, J.D. Berset, Fresenius J. Anal. Chem. 354, 477 (1996)

  8. J.L. Martínez Vidal, M. Moreno Frías, ·A. Garrido Frenich, F. Olea-Serrano, N. Olea, Anal Bioanal Chem, 372, 766 (2002)

  9. A. Trost, W. Kleiböhmer, K. Cammann, Fresenius J. Anal. Chem., 359, 249 (1997)

  10. J. Krupcik, A. Kocan, J. Petrik, P.A. Leclercq, K. Ballschmiter, Chromatographia, 35, 410 (1993)

  11. S. Pedersen-Bjergaard, S.I. Semb, J. Vedde, E.M. Brevik, T. Greibrokk, Chromatographia 43, 44 (1996)

  12. J.W. Cochran, G.M. Frame, J. Chromatogr. A 843, 323 (1999)

  13. S. Chu, X. Miao, X. Xu, J. Chromatogr. A, 724, 392 (1996)

  14. G. Castello, G. Testini, J. Chromatogr. A, 787, 215 (1997)

  15. V. Chiosa, G. Mindrila, C. Mandravel, C. Toader, Proc. 32rd Amer. Rom. Acad. (ARA) Congress, July 22-27, Boston, MA, USA, 2008, 131-133

  16. B. Tiperciuc, C. Sarbu, Liq. Chromat. Rel. Technol., 29, 2257 (2006)

  17. S.A. Mills III, DI Thal and J Barney, Chemosphere, 68, 1603 (2007)

  18. http://www.leco.com/resources/application_note_subs/pdf/separation_science/-248.pdf (last accesed September 13, 2010)

  19. Hyperchem program V. 6.02 for Windows, Hypercube Inc., 2000

  20. Mathcad 7 professional program, 1986–1997 MathSoft, Inc

  21. T. Oberg, Int J Chem, 5, 1 (2001)

  22. R. Done, G. Mindrila, I. Stanculescu, Anal. Univ. Buc. Chim., XVI, 45, (2007)

  23. Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, Wiley-VCH, Wennheim, Germany, 1997

  24. A. Beteringhe, A.C. Radutiu, M. Bem, T. Constantinescu, A.T. Balaban, Int. Electron. J. Mol. Design, 5, 237 (2006).




Определяне на индексите на задържане при хроматографския анализ на поли-хлорирани бифенили (PCB) с помощта на множествена линейна регресия

Й. Станкулеску1,2, Г. Миндрила1, К. Мандравел1



Департамент по физикохимия, Химически факултет, Университет на Букурещ, бул. Кралица Елизабет,4-12 район 3, Букурещ 030018, Румъния
2 – Технологичен център IRASM, Национален институт по физика и чдрено инженерство “Хория Холубеи”, ул. Атомистилор, 407, Магуреле, Илфов 077125, Румъния

Постъпила на 6 август, 2010 г.; преработена на 14 септември, 2010 г.

(Резюме)

Приложен е методът на множествената линейна регресия за определяне на времената на задържане при хроматографията на поли-хлорирани бифенили (PCB). Определени са девет референтни хроматографски индекса (R) използвайки 8 изчислени молекулни свойства (дескриптори): моларен обем, молекулна маса, коефициент на разпределение (logP), ван-дер-Ваалс’ова и достъпна повърхност по разтворител, диполен момент, and гранични орбитални енергии. Подбрани са най-подходящите уравнения според най-високия качетсвен индекс F и най-ефективната комбинация от дескриптори. Както се очаква, дескрипторът “ван-дер-Ваалс’ова повърхност” се явява често в най-добрите уравнения. В обсъжданите уравнения дескрипторът logP, корелиран с липофилността и индекса на реактовпспособност (εHOMO and εLUMO) има най-голямо тегло.






343

Каталог: bcc volumes
bcc volumes -> Bulgarian Chemical Communications, Volume 41, Number 2 (pp. 104-109) 2009
bcc volumes -> Bulgarian Chemical Communications, Volume 41, Number 1 (pp. 23-30) 2009
bcc volumes -> Bulgarian Chemical Communications, Volume 41, Number 2 (pp. 127-132) 2009
bcc volumes -> Bulgarian Chemical Communications, Volume 40, Number 4 (pp. 464-468) 2008
bcc volumes -> Bulgarian Chemical Communications, Volume 41, Number 2 (pp. 133-137) 2009
bcc volumes -> Bulgarian Chemical Communications, Volume 40, Number 4 (pp. 397-400) 2008
bcc volumes -> Bulgarian Chemical Communications, Volume 46, Number 2 (pp. 330 333) 2014
bcc volumes -> Bulgarian Chemical Communications, Volume 44, Number 4 (pp. 307 309) 2012
bcc volumes -> Bulgarian Chemical Communications, Volume 47, Number 2, 2015
bcc volumes -> Bulgarian Chemical Communications, Volume 44, Number 4 (pp. 283 288) 2012


Сподели с приятели:




©obuch.info 2024
отнасят до администрацията

    Начална страница