Книга за прос­транството и времето след лекциите, които изнесох в Харвард през 1982 г. За ранната Вселена вече има значителен брой книги



страница8/9
Дата23.07.2016
Размер2 Mb.
ТипКнига
1   2   3   4   5   6   7   8   9

9. СТРЕЛАТА НА ВРЕМЕТО
В предишните глави видяхме как нашите представи за природата на време-то са се променяли с годините. Чак до началото на нашия век хората вярваха в абсолютното време. Така всяко събитие може да се означи с число, наречено „време", по единствен начин и интервалът от време между две събития за всички -точни часовници ще бъде един и същ. Откритието, че скоростта на светлината изглежда една и съща за всеки наблюдател независимо от това, как той се движи, доведе обаче до теорията на относителността, а в нея се наложи да се откажем от идеята за едно-единствено абсолютно време. Вместо него всеки наблюдател има собствена мярка за време, отчитана по негови л часовник, а часовниците на различни наблюдатели не непременно се съгласуват. Така времето се превърна в една по-лична представа, свързана с наблюдателя, който го измерва.

Когато се опитваме да обединим гравитацията с кванто­вата механика, се налага да въведем понятието „имагинерно" време. Имагинерното време е неразграничимо от посоките в пространството. Ако вървим на север, можем да се обърнем и да тръгнем на юг; по същия начин, ако вървим напред в имагинерното време, би трябвало да можем да се обърнем и да тръгнем назад. Тава означава, че в имагинерното време не е възможно да има съществена разлика между посоките напред и назад. От друга страна, когато става въпрос за „реално" време, както всички знаем, разликата между напред и назад е твърде голяма. Откъде идва тази разлика между минало и бъдеще? Защо помним миналото, а не бъдещето?

Научните закон: и не правят разлика между минало и бъдеще. По-точно, както вече обяснихме, научните закони не се променят при комбиниране на операциите или симетриите, познати като С, Р и Т (С означава смяна на частици с античастици. Р значи огледално изображение, в което лявото и дясното са разменени. А Т значи обръщане на посоката на движение на всички частици: всъщност движение в обратна посока, назад.) Научните закони, които управляват поведението на материята при всички нормални ситуации, не се променят при комбини­ране на двете операции С и Р сами по себе си. С други думи, животът на жителите на друга планета, които са наши огледал­ни образи и са от антиматерия, а не от материя, ще бъде съвсем същият като нашия.

След като научните закони не се променят при комбини­ране на операциите С и Р, както и от комбинацията С, Р и Т, те би трябвало да не се променят и само при операция Т. И въпреки това в обикновения живот в реално време съществува голяма разлика между посоките напред и назад. Да си предс­тавим чаша с вода, която пада от масата и се счупва на парченца на пода. Ако я заснемете, можете лесно да кажете дали се движи напред или назад. Ако пуснете филма обратно, ще видите как парченцата внезапно се слепват на пода и скачат обратно на масата като цяла чаша. Вие можете да кажете дали филмът се движи назад, защото този вид поведение никога не се наблю­дава в обикновения живот. Ако не беше така, стъкларите щяха да станат излишни.

Обяснението, което обикновено се дава на въпроса, защо не виждаме как счупената чаша се слепва и скача обратно на масата, е, че това е забранено според втория закон на термодинамиката. Той твърди, че във всяка затворена система хао­сът, или ентропията, винаги нараства с времето. С други думи нещо като закона на Мърфи: Работите винаги вървят зле! Една здрава чаша на масата е състояние на пълен ред, но счупена чаша на пода е в състояние на безредие. Лесно можем да преминем от чаша на масата в миналото към счупена чаша на пода в бъдещето, но не и обратно.

Нарастването на хаоса, или ентропията, с времето е при­мер за т. нар. стрела на времето — нещо, което разграничава миналото от бъдещето и дава посока на времето. Съществуват поне три различни стрели на времето. Първо, термодинамичната стрела на времето — посоката на времето, в която хаосът, или ентропията, нараства. После — психологичната стрела на времето. Това е посоката, в която усещаме, че времето тече, посоката, в която помним миналото, но не и бъдещето. И накрая — космологичната стрела на времето. Това е посоката на времето, в която Вселената се разширява, а не се свива.

В тази глава ще се аргументирам за това, как условието „без никаква граница" за Вселената, съчетано със слабия антропен принцип, може да обясни защо и трите стрели имат една и съща посока и нещо повече — защо изобщо съществува добре дефинирана стрела на времето. Ще обсъдя как психологичната стрела се определя от термодинамичната и защо тези две стрели по необходимост винаги имат една и съща посока. Ако приемем за Вселената условието „без никаква граница", ще видим, че трябва да съществуват добре дефинирани термодинамична и космологична стрела на времето, но те няма да имат една и съща посока през цялата история на Вселената. Но аз ще се аргументирам, че само когато те имат една и съща посока, условията са подходящи за развитието на интелигентни същес­тва, които могат да зададат въпроса: Защо хаосът нараства в същата посока на времето, както посоката, в която Вселената се разширява?

Ще се спра първо на термодинамичната стрела на времето.

Вторият закон на термодинамиката идва от факта, че състоянията на хаос са винаги много повече от състоянията на ред. Да разгледаме например два елемента от детска мозайка. Съществува едно и само едно подреждане, при което двата елемента участват в завършена картина. От друга страна, съществуват много голям брой подреждания, при които те са в хаотично състояние и не образуват завършена картина.

Да предположим, че една система тръгва от едно измежду малкия брой подредени състояния. С времето системата ще се развива по научните закони и нейното състояние ще се променя. На някакъв по-късен момент ще е по-вероятно системата да е в състояние на хаос, отколкото на ред, защото хаотичните състояния са повече. Така с времето състоянието на хаос ще се стреми да нараства, ако системата се подчинява на начално условие за по-висок ред. Да предположим, че първоначално двата елемента от мозайката са подредени в кутия и образуват завършена картина. Ако разклатите кутията, те ще заемат друго подреждане. Вероятно то ще е безредно и елементите няма да образуват картина просто защото хаотичните разположения са много повече. Някои групи от елементите ще образуват част от общата картина, но колкото повече разклащате кутията, тол­кова по-вероятно е тези групи да се нарушат и елементите да се разбъркат така, че изобщо да не образуват никаква картина.

Така безредието в елементите вероятно ще нараства с времето, ако те се подчиняват на началното условие да са започнали от състояние на по-висок ред.

Да предположим обаче, че Бог е решил Вселената да завърши в състояние на пълен ред, но че няма значение от какво състояние е започнала. В ранни времена Вселената вероятно ще бъде в хаотично състояние. Това ще значи, че безредието ще намалява с времето. Ще станем свидетели на това, как счупената чаша събира парченцата си и скача на масата. Но всяко човешко същество, което наблюдава тази чаша, ще живее във вселена, в която безредието намалява с времето. Аз ще покажа, че за такова същество психологичната стрела на времето ще е обърната назад. Така то ще помни събитията от бъдещето, а не от тяхното минало. Когато чашата е счупена, за него тя ще е на масата, а когато е на масата, то няма да помни, че е била на пода.

Трудно е да се говори за човешката памет, защото не знаем как точно функционира мозъкът. Но знаем съвсем точно как функционира паметта на компютъра. Поради това ще разгледам психологичната стрела на времето за компютри. Смятам за логично да приемем, че стрелата за компютри е същата както за хора. Ако не беше така, щяхме да направим жесток удар на борсата с компютъра си, който би помнил утрешните цени!

Принципно паметта на компютъра е съставена от елемен­ти, които са в едно от двете възможни състояния. Един прост пример е сметалото. В най-простия си вид то се състои от няколко телчета, върху всяко от които има топче, което може да се мести в едно от двете възможни положения. Преди да запишем елемент информация, паметта на компютъра е в състояние на безредие, с равни вероятности за двете възможни състояния. (Топчетата на сметалото са разпръснати безразбор­но върху телчетата.) След като паметта взаимодейства със системата за запаметяване, тя определено ще мине в едното или другото състояние в зависимост от състоянието на систе­мата. (Всяко топче на сметалото е или отляво, или отдясно по телчето.) Така паметта преминава от състояние на безредие в състояние на порядък. Но за да сме сигурни, че паметта е в Правилно състояние, е необходимо да използваме известно количество енергия (да придвижим топчето или да захраним компютъра например.) Тази енергия се разсейва под формата на топлина и увеличава степента на безредие във Вселената.

Можем да покажем, че това нарастване на безредието е винаги по-голямо от увеличаването на реда в самата памет. Така топлината, извеждана от вентилатора на компютъра, означава, че когато компютърът запаметява елемент информация, общо­то количество безредие във Вселената ще расте. Посоката на времето, в която компютърът запаметява миналото, е същата, в която нараства безредието.

Поради това нашето субективно усещане за посока на времето, психологичната стрела на времето, се определя в мозъка ни от термодинамичната стрела на времето. Също като компютъра ние трябва да запомним нещата в реда на нараст­ване на ентропията. Това прави втория закон на термодинамиката почти тривиален. Безредието нараства с времето, защото ние измерваме времето в посоката, в която безредието нараст­ва. По-добър залог от този няма!

Но защо изобщо трябва да съществува термодинамична стрела на времето? Или с други думи, защо Вселената трябва да е в състояние на пълен ред в единия край на времето, този, който наричаме минало? Защо не е винаги в състояние на пълен хаос? В края на краищата това би изглеждало по-вероятно. И защо посоката на времето, в която хаосът нараства, е същата, в която Вселената се разширява?

В класическата обща теория на относителността не можем да предскажем как е започнала Вселената, защото всички познати ни научни закони са били невалидни в сингулярността на Големия взрив. Вселената трябва да е започнала от много гладко и подредено състояние. Това би трябвало да доведе до добре дефинирани термодинамична и космологична стрела на времето, както наблюдаваме. Но еднакво добре би започнала и от много набръчкано и хаотично състояние. В този случай Вселената вече е била в състояние на пълен хаос, така че безредието не би могло да нараства с времето. То или би останало постоянно, в който случай няма да има добре дефи­нирана термодинамична стрела на времето, или ще намалява, в който случай термодинамичната стрела на времето ще сочи обратно на космологичната стрела. Никоя от тези вероятности не се съгласува с нашите наблюдения. Но, както видяхме, класическата обща теория на относителността предсказва соб­ствения си крах. Когато кривината на пространство-времето стане голяма, придобиват значение квантовите гравитационни ефекти и класическата теория престава да е добро описание на Вселената. За да разберем началото на Вселената, трябва да използваме квантовата теория на гравитацията.

Както видяхме в последната глава, за да определим със­тоянието на Вселената в квантовата теория на гравитацията, пак трябва да можем да кажем какво ще е поведението на възможните траектории във Вселената на границата на прост­ранство-времето в миналото. Можем да избегнем трудността да се налага да описваме нещо, което не знаем и не можем да знаем, само ако траекториите удовлетворяват условието „без никаква граница": те са крайни по размер, но нямат никакви граници, край или сингулярности. В този случай началото на времето ще бъде една регулярна, гладка точка от пространст­во-времето и Вселената ще трябва да започне разширението си от едно много гладко и подредено състояние. Тя не би могла да е напълно еднородна, защото по този начин би се нарушил принципът на неопределеността от квантовата теория. Би тряб­вало да има малки флуктуации в плътността и скоростта на частиците. Условието „без никаква граница" обаче налага тези флуктуации да са колкото е възможно по-малки в съгласие с принципа на неопределеността.

Вселената би започнала с период на експоненциално или „инфлационно" разширение, при което размерът й би трябвало да се увеличи с много голям фактор. По време на това разши­рение флуктуациите в плътността първоначално са оставали малки, но впоследствие са започнали да нарастват. Областите с плътност малко над средната е трябвало да се разширяват по-бавно поради гравитационното привличане от допълнител­ната маса. Накрая тези области спират разширението си и колапсират, за да образуват галактики, звезди и същества като нас. Вселената започва от гладко и подредено състояние и с времето преминава в набръчкано и хаотично състояние. Това обяснява съществуването на термодинамичната стрела на вре­мето.

Но какво ще стане, ако Вселената спре да се разширява и започне да се свива? Ще се обърне ли термодинамичната стрела и ще започне ли безредието да намалява с времето? Това би Довело до най-различни възможности из областта на научната фантастика за хората, оцелели от разширяващата се до свива­щата се фаза. Дали ще наблюдават как счупената чаша се вдига °т пода и скача на масата? Ще могат ли да помнят утрешните Цени и да натрупат състояние на борсата? Прекалено академич­но ще е да се тревожим за това, какво би станало, когато Вселената започне отново да колапсира, защото това няма да се случи поне през следващите 10 млрд. години. Но има един по-бърз начин да разберем какво ще стане: да скочим в черна дупка. Колапсът на една звезда да образува черна дупка е твърде сходен на по-късните стадии от колапса на цялата Вселена. Така че, ако безредието ще намалява във фазата на свиване на Вселената, бихме могли да очакваме да намалява и вътре в черната дупка. Тогава може би астронавтът, попаднал в черна дупка, ще успее да спечели на рулетка, като запомни къде е отишло топчето, преди да е заложил. (За съжаление обаче няма да му се удаде да играе дълго, преди да бъде превърнат в макарон. Не би могъл и да ни уведоми за обръ­щането на термодинамичната стрела, нито да вложи в банка печалбата си, защото ще бъде пленен зад хоризонта на събития на черната дупка.)

Първоначално мислех, че безредието ще намалява, когато Вселената отново колапсира, защото според мен Вселената трябва да се върне до гладко и подредено състояние, когато отново стане малка. Това би значело фазата на свиване да е подобна на обръщане на времето във фазата на разширение. Тогава хората във фазата на свиване щяха да живеят живота си назад: трябваше да умрат, преди да са се родили, и да стават все по-млади, колкото повече се свива Вселената.

Тази идея е примамлива, защото предоставя добра симет­рия между фазите на разширение и свиване. Но не бихме могли да я приемем сама по себе си, независима от останалите идеи за Вселената. Въпросът е: налага ли се това по силата на условието „без никаква граница", или не се съгласува с това условие? Както казах, отначало мислех, че условието „без никаква граница" наистина налага намаляване на хаоса във фазата на свиване. Отчасти бях заблуден от аналогията със земната повърхност. Ако приемем Северния полюс за начало на Вселената, то краят на Веселената би трябвало да е подобен на началото, също както Южният полюс е подобен на Север­ния. Но Северният и Южният полюс отговарят на началото и края на Вселената в имагинерно време. Началото и краят в реално време могат да са много различни един от друг. Бях заблуден и от работата си върху един прост модел на Вселена­та, в който фазата колапс изглежда като времето, обърнато във фазата разширение. Но един мой колега, Дон Пейдж, от Пенсилванския университет отбеляза, че условието „без никак­ва граница" не изисква фазата свиване непременно да е времето, обратно на фазата разширение. След това един от моите студенти, Реймънд Лафлам, установи, че в малко по-сложен модел колапсът на Вселената е твърде различен от разширението. Разбрах, че съм допуснал грешка: условието „без никаква граница" налага хаосът фактически да продължава да нараства по време на свиването. Термодинамичната и психологичната стрела на времето не се обръщат нито когато Вселената отново започне да се свива, нито във вътрешността на черна дупка.

Какво би направил човек, когато открие, че е допуснал подобна грешка? Някои никога не биха си признали, че са сбъркали, и биха продължили да търсят нови, често взаимно изключващи се аргументи в своя подкрепа — както Едингтън се противопостави на теорията на черните дупки. Други ще твърдят, че преди всичко никога не са поддържали неправил­ния възглед или ако са го подкрепяли, то е било само за да покажат, че е несъстоятелен. На мен ми се струва много по-подходящо и по-малко смущаващо, ако публично приз­наете грешката си. Един такъв добър пример е Айнщайн, който нарече космологичната константа, въведена от него при опит да изгради статичен модел на Вселената, най-голя­мата грешка в живота си.

Да се върнем към стрелата на времето. Остава въпросът: Защо ние наблюдаваме термодинамичната и космологичната стрела да имат една и съща посока? Или с други думи, защо хаосът расте в същата посока на времето, в която Вселената се разширява? Ако вярваме, че Вселената ще се разшири и после отново ще се свие, както изглежда налага условието „без никаква граница", въпросът се превръща в: защо същес­твуваме във фазата на разширение, а не във фазата свиване. На този въпрос можем да отговорим въз основа на слабия антропен принцип. Условията във фазата свиване няма да са подходящи за съществуването на разумни същества, способни да запитат: Защо хаосът расте в същата посока на времето, в която Вселената се разширява? Инфлацията в ранните стадии на Вселената, която условието „без никаква граница" предсказва, означава Вселената да трябва да се разширява със скорост, много близка до критичната, при която точно да се избегне повторният колапс, така че за дълго време няма да има повторен колапс. Дотогава всички звезди ще са изгаснали, а протоните и неутроните в тях ще са се {разпаднали на леки частици и излъчване. Вселената ще бъде в състояние на почти пълен хаос. Вече няма да има силна термодинамична стрела на времето. Хаосът няма да може много да нараства, защото Вселената вече ще е достигнала състояние на почти пълно безредие. Но за да има разумен живот, трябва да действа силна термодинамична стрела. За да оцелеят, хората трябва да консумират храна, която е подредена форма на енергията, и да я превръщат в топлина, която е неподредена форма на енергията. Така разумен живот не би могъл да съществува във фазата свиване на Вселената. Това е обяснението на въпроса, защо термодинамичната и космологичната стрела на времето имат една и съща посока. Не разширението на Вселената причинява нарастването на хаоса. По-скоро условието „без никаква граница" заставя безредието да нараства и създава условия, благоприятни за разумен живот само във фазата разширение.

Да резюмираме. Научните закони не правят разлика между посоките напред и назад във времето. Съществуват обаче поне три стрели на времето, които разграничават минало от бъдеще. Това са термодинамичната стрела — посоката на времето, в която хаосът нараства; психологич­ната стрела — посоката на времето, в която помним мина­лото, а не бъдещето; и космологичната стрела — посоката на времето, в която Вселената се разширява, а не се свива. Аз показах, че психологичната стрела е по същество една и съща с термодинамичната, така че двете винаги имат една и съща посока. Условието „без никаква граница" за Вселената предсказва съществуването на добре дефинирана термодина­мична стрела на времето, защото Вселената трябва да тръгва от гладко и подредено състояние. А причината да наблюда­ваме съгласие между термодинамичната и космологичната стрела е, че разумни същества могат да съществуват само във фаза разширение. Фазата свиване ще бъде неподходяща, тъй като няма силна термодинамична стрела на времето.

Прогресът на човечеството в разбирането на Вселената е внесъл малко кътче на ред в една Вселена с нарастващо безредие. Ако запомните всяка дума от тази книга, в паметта ви ще се съхраняват около 2 млн. единици информация: редът в паметта ви ще се е увеличил с приблизително 2 млн. единици. Но докато сте чели книгата, вие сте преобразували поне хиляда калории енергия на реда във вид на храна в енергия на безредието под формата на топлина, която сте загубили във въздуха около вас чрез конвекция и потене. Тя ще увеличи хаоса във Вселената с около 2. 1025 единици или около 1019 пъти повече от реда във вашия мозък, но само при условие че сте запомнили всичко прочетено. В следващата глава ще се опитам да подобря реда в нашата „джунгла" още малко, като обясня как учените се опитват да „нагодят" частните теории, които описах, една към друга, за да се получи завър­шена единна теория, която да обхваща всичко във Вселената.
10. ОБЕДИНЕНИЕТО НА ФИЗИКАТА
Както обяснихме в първа глава, създаването на една завършена единна теория за всичко във Вселената с един замах е много трудно. Ето защо прогресът се постига чрез намиране на частни теории, описващи ограничен обхват от събития, и чрез пренебрегване на останалите ефекти или численото им апроксимиране. (Химията например ни позволявала изчислим взаимодействията между атомите, без да познаваме вътрешния строеж на атомното ядро.) В крайна сметка обаче ние се надяваме да намерим една завършена, състоятелна, единна теория, която да включва всички тези частни теории като приближения и която не се налага да пригаждаме към фактите, подбирайки стойности за някои произволно избрани числа в теорията. Търсенето на такава теория е известно като "обеди­нение на физиката". Айнщайн прекара повечето от последните си години в безуспешно търсене на единна теория, но времето не беше дошло: съществуваха частни теории за гравитацията и електромагнитната сила, но за ядрените сили се знаеше твърде малко. Освен това Айнщайн отказа да повярва в реалността на квантовата механика независимо от важната си роля в нейното създаване. И все пак, изглежда, че принципът на неопределеността е фундаментално свойство на Вселената, в която жи­веем. Поради това една успешна единна теория непременно трябва да включва този принцип.

Както ще опиша по-нататък, перспективите да се намери такава теория, изглежда, са вече много по-добри, тъй като вече знаем много повече за Вселената. Но трябва да се пазим от прекалена самоувереност: вече сме преживявали преждевремен­ни радости! В началото на този век например се смяташе, че всичко може да се обясни чрез термини от свойствата на непрекъснатата материя като свойството еластичност или топлопроводимост. Откриването на строежа на атома и принципа на неопределеността постави категоричен край на това. Впос­ледствие, през 1928 г. физикът и Нобелов лауреат Макс Борн каза пред посетители в Гьотингенския университет: „Физиката, такава, каквато я познаваме, ще стигне до своя край за шест месеца." Неговата увереност се базираше на наскоро откритото от Дирак уравнение, управляващо електрона. Предположи се, че подобно уравнение би управлявало и протона, който по онова време беше единствената друга позната частица, и че това ще е краят на теоретичната физика. Откриването на неутрона и ядрените сили обаче ни нанесе поредния удар. Казвайки това, аз продължавам да вярвам, че предпоставки за умерен опти­мизъм има и че може би сме достигнали края на търсенето на последните закони в природата.

В предишните глави описах общата теория на относител­ността, частната теория на гравитацията и частните теории, които управляват слабото, силното и електромагнитното вза­имодействие. Последните три могат да се съчетаят в т. нар. теории на Великото обединение, които не са много удовлетво­рителни, защото не включват гравитацията и защото съдържат някои величини, като относителните маси на различните час­тици, които не могат да се предскажат теоретично, а се налага да бъдат подбирани така, че да съответстват на наблюденията. Основната трудност мри намирането на теория, обединяваща гравитацията с останалите сили, е, че общата теория на отно­сителността е „класическа" теория, т. е. тя не включва прин­ципа на неопределеността от квантовата механика. От друга страна, останалите частни теории съществено зависят от кван­товата механика. Ето защо първата необходима стъпка е да съчетаем общата теория на относителността с принципа на неопределеността. Както видяхме, това може да доведе до някои забележителни последствия, като например черните дуп­ки да не са чак толкова черни и Вселената да няма сингулярности, а да е напълно независима и без граница. Бедата е, както обясних в глава VII, че според принципа на неопределеността дори „празното" пространство е изпълнено с двойки виртуални частица/античастица. Тези двойки притежават безкрайно коли­чество енергия и поради това според знаменитото уравнение на Айнщайн Е = тс2 ще имат и безкрайна маса. Ето защо тяхното гравитационно привличане ще изкриви Вселената до безкрайно малък размер.

И в другите частни теории се наблюдават твърде сходни, наглед абсурдни безкрайности, но във всички тези случаи те могат да се отстранят чрез процедура, наречена пренормировка. Тя е свързана с унищожаване на безкрайностите чрез въвеждане на други безкрайности. Макар този метод да е твърде съмнителен от математическа гледна точка, изглежда, че на практика действа и е бил използван в тези теории за предсказания, които изклю­чително точно се съгласуват с наблюденията. Пренормировката обаче има един сериозен недостатък по отношение опита да намерим една завършена теория, защото означава, че действи­телните стойности на масите и големината на силите не могат да се предскажат от теорията, а трябва така да се подберат, че да съответстват на наблюденията.

Когато се опитваме да въведем принципа на неопределеността в общата теория на относителността, има само две величини, които трябва да се подбират: гравитационната сила и стойността на космологичната константа. Но тяхното под­биране не е достатъчно да отстрани всички безкрайности. Излиза, че разполагаме с теория, която предсказва, че някои величини, като кривината на пространство-времето, са наисти­на безкрайни, а тези величини могат да се наблюдават и измерват и са крайни! Този проблем при съчетаването на общата теория на относителността с принципа на неопределеността беше подозиран от известно време, но окончателно бе потвърден от подробни изчисления през 1972 г. Четири години по-късно бе предложено едно възможно решение, наречено „супергравитация". Идеята беше да се комбинира частицата със спин 2, наречена гравитон, която пренася гравитационното взаимодействие, с някои други нови частици със спин 3/2, 1,1/2 и 0. В известен смисъл тогава всички частици могат да се разглеждат като различни прояви на една и съща „свръхчастица", като по този начин ще се обединят материалните частици със спин 1/2 и 3/2 с частиците, пренасящи взаимодействие със спин 0,1 и 2. Двойките виртуални частица/античастица със спин 1/2 и 3/2 ще имат отрицателна енергия, така че ще се стремят да унищожат положителната енергия на двойките виртуални частици със спин 2, 1 и 0. По този начин ще се унищожат много от възможните безкрайности, но се подозираше, че някои безкрайности биха могли да останат. Обаче изчисленията, необходими да се установи дали остават неунищожени безкрайности, са толкова продължителни и трудни, че никой не бе готов да се заеме с тях. Предполагаше се, че дори с компютър ще отнемат поне четири години, а вероятността човек да допусне поне една грешка, а може би и повече, е твърде голяма. Така че дали отговорът ще е верен, бихме разбрали само ако още някой повтори изчисленията и получи същия отговор, а това не изглеждаше твърде правдоподобно!

Независимо от тези проблеми и от факта, че частиците от теориите за супергравитацията, изглежда, не съответстваха на наблюдаваните, повечето учени смятаха, че вероятно суперграви­тацията е правилното решение на проблема по обединението на физиката. Тя бе приета като най-добрия начин за обединяване на гравитацията с другите взаимодействия. През 1984 г. обаче вез­ните натежаха в полза на т. нар. струнни теории. В тези теории основните обекти не са частици, заемащи една-единствена точка в пространството, а обекти, които имат дължина, но не и друго измерение, подобни на безкрайно тънка част от струна. Тези струни могат да имат край (т. нар. отворени струни) или да бъдат свързани сами със себе си в затворени примки (затворени струни) (фиг. 10.1 и фиг. 10.2). Една частица във всеки момент заема една точка от пространството. Така нейната траектория може да се представи с линия в пространство-времето („мирова линия"). Една струна, от друга страна, във всеки момент заема линия в пространството. Така нейната траектория в пространство-време­то е двумерна повърхнина, наречена мирови слой. (Всяка точка от този мирови слой може да се опише с две числа: едното, определящо времето, а другото - положението на точката върху струната.) Мировият слой на една отворена струна е лента; нейните ръбове представляват траекториите на краищата на струната през пространство-времето (фиг. 10.1). Мировият слой на една затворена струна е цилиндър или тръба (фиг. 10.2); сечението през тръбата е кръг, представляващ положението на струната в даден момент.

Две части от струна могат да се свържат и да образуват единична струна; отворените струни просто свързват краищата си (фиг. 10.3), но когато са затворени, се получава нещо като двата крачола на панталон (фиг. 10.4). По същия начин парче от струна може да се раздели на две струни. В струнните теории това, което по-рано се приемаше за частици, сега се представя като вълни, които се движат по струната подобно на вълните по трептящата връвчица на хвърчило. Излъчването или поглъ­щането на една частица от друга отговаря на разделянето или свързването на струни. Гравитационната сила на Слънцето върху Земята например се представя в теориите на елементарните частици като резултат от излъчването на гравитон от частица на Слънцето и неговото поглъщане от частица на Земята (фиг. 10.5). В струнните теории този процес отговаря на тръба с профил Н (фиг. 10.6). (В известен смисъл струнните теории са нещо като водопроводно дело.) Двете вертикални части на Н отговарят на частиците в Слънцето и Земята, а напречната хоризонтална пресечка отговаря на гравитона, кой­то се движи между тях.

Струнната теория има интересна история. Първоначално тя е изобретена в края на 60-те години при опит да се намери теория за описване на силното взаимодействие. Идеята е, че частици като протона и неутрона могат да се разглеждат като вълни по струна. Силните взаимодействия между частиците биха отговаряли на части от струна, които се вплитат между други нейни участъци подобно на паяжина. За да може тази теория да даде наблюдаваната стойност на силното взаимо­действие между частиците, струните би трябвало да са като каучукови ремъци, с спъване около десет тона. През 1974 г. Жоел Шерк от Париж и Джон Шварц от Калифорнийския технологичен институт публикуваха работа, в която показаха, че струнната теория може да опише гравитационната сила, но само ако разтягането на струната е много по-голямо - прибли­зително 1039 тона. Предсказанията на струнната теория при нормални по мащаб дължини са точно същите както при общата теория на относителността, но при съвсем малки разстояния, по-малки от 1033 см, те ще се различават. На работата им обаче не бе обърнато особено внимание, защото почти по същото време първоначалната струнна теория при силното взаимодействие бе изоставена и бе предпочетена тео­рията, основана върху кварки и глуони, която сякаш много по-добре се съгласуваше с наблюденията. Шерк загина при трагични обстоятелства (той страдаше от диабет и изпадна в кома, когато нямаше никой край него, за да му постави инжекция инсулин). Така Шварц остана почти единственият поддръжник на струнната теория, но вече при много по-висока предложена стойност за разтягане на струната.

През 1984 г. интересът към струните внезапно се възроди, очевидно по две причини. Едната, че всъщност не беше постиг­нат особен напредък в доказването на крайния характер на супергравитацията, нито че с нейна помощ могат да се обяснят различните видове частици, които наблюдаваме. Другата бе публикацията.на Джон Шварц и Майк Грийн от колежа „Куин Мери" в Лондон, която показа, че може би теорията на стру­ните ще успее да обясни съществуването на частици, притежа­ващи присъща лява ориентация като някои от частиците, които наблюдаваме. Независимо от причината голям брой учени скоро започнаха да работят по струнната теория и бе развит нов вариант - т. нар. хетеротична струна, който сякаш щеше да обясни видовете частици, които наблюдаваме.

Струнните теории също водят до безкрайности, но се смята, че всички те се унищожават при варианти като хетеротичната струна (макар че все още не е съвсем сигурно). Струнните теории обаче се сблъскват с голям проблем: те са състоятелни само ако пространство-времето е с 10 или 26 измерения, а не с обикновените четири! Разбира се, допълнителните измерения на пространство-времето са нещо обичайно за научната фантасти­ка; всъщност те са почти наложителни, защото иначе фактът, че относителността налага да не можем да се движим по-бързо от светлината, означава, че пътешествията до звезди и галак­тики ще отнемат много повече време. Научнофантастичната идея се крие в предположението, че е възможно да преминем напряко през по-високо измерение. Това може да се представи по следния начин. Приемете, че пространството, в което жи­веем, има само две измерения и е изкривено като повърхността на спасителен пояс или тор (фиг. 10.7). Ако сте от вътрешната страна на пръстена и искате да стигнете до точка от отсрещната страна, трябва да се движите по вътрешната обиколка на пръстена. Но ако можете да пътувате в третото измерение, просто ще пресечете.

Защо не забелязваме всички тези допълнителни измере­ния, ако те наистина съществуват? Защо виждаме само три пространствени и едно времево измерение? Предположението е, че останалите измерения са изкривени в пространство с много малък размер, нещо като 1030 част от инча.То е толкова малко, че просто не го забелязваме; ние виждаме само едно времево измерение и три пространствени измерения, в които пространство-времето е почти плоско. Нещо като повърхност­та на портокал: ако я гледате отблизо, тя е обла и набръчкана, но от разстояние няма да виждате грапавините и тя ще изглеж­да гладка. Така е и с пространство-времето: в съвсем малки мащаби то е десетмерно и силно изкривено, но в по-големи мащаби няма да виждате кривината или допълнителните изме­рения. Ако тази картина е вярна, тя носи лоши новини за бъдещите космически пътешественици: допълнителните изме­рения ще бъдат прекалено малки, за да пропуснат космическия кораб. Тук обаче възниква друг голям проблем. Защо само някои, а не всички измерения да са свити до малка топка? Вероятно в съвсем ранната Вселена всички измерения са били изкривени. Защо едното измерение време и трите пространст­вени са се изгладили, докато другите са останали плътно навити?

Един възможен отговор е антропният принцип. Изглежда, че две пространствени измерения не са достатъчни за развити­ето на такива сложни организми като нас. Ако на едномерна земя живеят двумерни същества, те ще трябва да се прескачат, за да се разминат. Когато двумерното същество се храни, то няма да може да смели храната си напълно и ще трябва да изхвърля остатъците по същия път, по които е приело храната, защото, ако имаше канал през тялото му, той би разцепил съществото на две отделни части: нашето двумерно същество ще се раздели наполовина (фиг. 10.8). По същия начин трудно бихме си представили някакво кръвообращение в едно двумер­но същество.

Ще срещнем проблеми и при пространство с повече от три измерения. Гравитационната сила между две тела ще намалява по-бързо с разстоянието, отколкото при три измерения. (При три измерения гравитационната сила спада до 1/4 с увеличаване на разстоянието два пъти. При четири измерения тя ще спадне до 1/8, при пет до 1/16 и т. н. ) В резултат на това орбитите около Слънцето на планети като Земята ще станат нестабилни: и най-малкото отклонение от кръгова орбита, причинено от гравитационно привличане на други планети, ще застави Земя­та да се движи по спирала към Слънцето или в обратна посока. Тогава или ще изгорим, или ще замръзнем. Всъщност зависи­мостта на гравитацията от разстоянието при пространство с повече от три измерения означава, че Слънцето няма да може да съществува в стабилно състояние с равновесие между наля­гане и гравитация. То или ще се разпадне, или ще колапсира и ще образува черна дупка. И в двата случая то вече няма да е особено полезно като източник на топлина и светлина за живота на Земята. В по-малки мащаби електрическите сили, на които се дължи обикалянето на електроните по орбити около ядрото на атома, ще имат същото поведение както гравитаци­онните сили. Така електроните или съвсем ще се откъснат от атома, или ще се придвижат по спирала към ядрото. И в двата случая това няма да са атомите, които познаваме.

Изглежда, е ясно, че животът, поне какъвто го познаваме, може да съществува само в такива области от пространство-времето, в които времето и трите пространствени измерения не са свити до малки размери. Това значи, че можем да се обърнем към слабия антропен принцип, при условие че покажем, че струнната теория поне позволява съществуването на такива области от Вселената, а, изглежда, тя наистина позволява. Може би има и други области от Вселената или други вселени (каквото и да значи това), в които всички измерения са свити до малки размери или където повече от четири измерения са почти плоски, но в такива области не би имало разумни същества, които да наблюдават различния брой действителни измерения.

Извън въпроса за броя измерения, които, изглежда, пространство-времето има, струнната теория поставя и някои други проблеми, които трябва да се решат, преди да можем да я провъзгласим за окончателна единна теория на физиката. Все още не знаем дали всички безкрайности се унищожават взаим­но, нито как точно да свържем вълните по струната с конкрет­ния вид частици, които наблюдаваме. Въпреки това е възможно през следващите няколко години да намерим отговор на тези въпроси и към края на века да знаем дали струнната теория е наистина отдавна търсената обединена теория на физиката.

Но може ли наистина да има такава единна теория? Или просто гоним един мираж? Съществуват три възможности:

1) Действително има завършена единна теория, която някой ден ще открием, ако сме достатъчно находчиви.

2) Окончателна теория на Вселената няма. Съществува просто безкрайна поредица от теории, които все по-точно и по-точно описват Вселената.

3) Теория на Вселената няма; събитията не могат да се предскажат отвъд някаква степен, а настъпват случайно и произволно.

Някои биха пледирали в полза на третата възможност на основанието, че ако имаше една пълна система закони, това би попречило на Бог да промени решението си и да се намеси в света. Нещо като стария парадокс: може ли Бог да направи толкова тежък камък, че да не е в състояние да го вдигне? Но идеята, че Бог би желал да промени мнението си, е един пример за заблудата, отбелязана от св. Августин, представяйки Бог съществуващ във времето: времето е свойство само на Вселе­ната, създадена от Бог. Вероятно е знаел какво има предвид, когато го е казал!

С появата на квантовата механика ние започнахме да осъзнаваме, че събитията не могат да се предвидят с абсолютна точност, а винаги има известна степен на неопределеност. Ако ви харесва, можете да припишете този случаен характер на намесата на Бог, но това би била една твърде странна намеса: няма доказателства тя да е преднамерена. И наистина, ако беше преднамерена, по дефиниция не би била случайна. Днес ние на практика сме премахнали третата възможност и сме дефинира­ли целта на науката: нашата задача е да формулираме група закони, която да ни позволи да предсказваме събитията само до границата, поставена от принципа на неопределеността.

Втората възможност, че съществува безкрайна поредица от все по-точни теории, се съгласува с целия ни досегашен опит. В много случаи ние сме увеличили чувствителността на нашите измервания или сме провели нови наблюдения само за да открием нови явления, които не се предсказват от съществува­щата теория, и за да ги отчетем, е трябвало да развием по-съвършена теория. Тогава няма нищо чудно, ако сегашното поколение от теории на Великото обединение се окаже погреш­но в твърдението си, че нищо принципно ново няма да се случи между енергията на обединеното електрослабо взаимодействие около 100 GeV и енергията на Великото обединение от около 1015 GeV. Бихме могли да очакваме да открием няколко нови пласта на структура, по-основна от кварките и електроните, които сега разглеждаме като „елементарни" частици.

Но възможно е гравитацията да постави граница върху тази поредица от „кутии в кутии". Ако има частица с енергия над т. нар. Планкова енергия от 1019 GeV, масата й ще бъде така концентрирана, че тя ще се откъсне от останалата Вселена и ще образува малка черна дупка. Следователно е възможно поредицата от все по-точни теории да има известна граница, когато се приближаваме към все по-високи енергии, така че би трябвало да има някаква окончателна теория на Вселената. Разбира се, Планковата енергия е много далеч от енергиите 100 ОеУ, които са максимумът, достижим в момента лабораторно. В обозримото бъдеще надали ще достигнем Планковата енер­гия! Най-ранните стадии на Вселената обаче са арена, където такива енергии трябва да се появяват. Според мен изследвани­ята на ранната Вселена и изискванията на математическа със­тоятелност предоставят добър шанс да стигнем до завършена единна теория още приживе, при условие че преди това сами не се взривим.

Какво би значело, ако наистина открием окончателната теория на Вселената? Както беше обяснено в глава I, ние не можем никога да сме съвсем сигурни, че наистина сме открили правилната теория, тъй като теориите не могат да бъдат доказани. Но ако теорията е математически издържана и вина­ги дава предсказвания, които се съгласуват с наблюденията, можем да сме почти сигурни, че тя е вярна. Това би довело до края на една дълга и славна глава в историята на интелектуал­ната битка на човека да разбере Вселената. Но ще доведе и до революция в разбиранията на обикновения човек за законите, които управляват Вселената. По времето на Нютон бе възмож­но един образован човек да има представа от цялото човешко познание, поне в общи линии. Но развитието на науката оттогава насам направи това невъзможно. Тъй като теориите постоянно се променят, за да отчитат новите наблюдения, те никога не са напълно "смляни" или опростени, така че да са разбираеми за обикновения човек. Трябва да сте специалист, а дори и тогава можете само да се надявате истински да разберете малка част от научните теории. Освен това темпът на прогрес е така бърз, че това, което учим в училище или в университета, е винаги малко остаряло. Малцина са тези в крак с бързо напредващия фронт на познанието и те трябва да отдават цялото си време на това да специализират в тясна област. Останалите имат малка представа за постигнатите успехи и радостта от тях. Преди 70 години ако трябва да вярваме на Едингтън, общата теория на относителността е била разбира­ема само за двама. Сега се разбира от десетки хиляди висшисти, а милиони хора са поне запознати с основната идея. Ако бъде открита една завършена единна теория, само въпрос на време е тя да бъде „смляна" и опростена по същия начин и да се преподава в училищата поне в общи линии. Тогава ще получим известна представа за законите, които управляват Вселената и на които дължим своето съществуване.

Но дори и да открием една завършена единна теория, това няма да значи, че ще можем да предсказваме всички събития изобщо поради две причини. Първата е ограничението, нало­жено от принципа на неопределеността от квантовата механика върху възможностите ни да предсказваме. Няма как да го избегнем. На практика обаче това първо ограничение не е така силно като второто. То идва от факта, че не можем да решим уравненията на теорията точно, освен за някои прости случаи. (Ние дори не можем да решим точно уравнението за движение на три тела в Нютоновата теория на гравитацията, като труд­ността нараства с броя на телата и със сложността на теорията.)

Вече знаем законите, на които се подчинява материята при всички случаи с изключение на екстремните. По-конкретно, ние познаваме основните закони, залегнали в химията и биологи­ята. И въпреки това съвсем не сме свели проблемите до равнището на решими задачи; все още успехите ни в предвиж­дане на човешкото поведение с математически уравнения са малки! Така че дори и да намерим завършена група основни закони, за следващите години пак ще остане предизвикателната за интелекта задача да разработим по-добри методи за апрок-симиране, така че да можем да правим полезни предсказания за вероятния изход при сложни реални ситуации. Завършената, състоятелна единна теория е първата крачка: нашата цел е пълно разбиране на събитията, които ни заобикалят, както и на самото ни съществуване.


Каталог: sites -> default -> files
files -> Образец №3 справка-декларация
files -> Р е п у б л и к а б ъ л г а р и я
files -> Отчет за разкопките на праисторическото селище в района на вуз до Стара Загора. Аор през 1981 г. ХХVІІ нац конф по археология в Михайловград, 1982
files -> Медии и преход възникване и развитие на централните всекидневници в българия след 1989 година
files -> Окръжен съд – смолян помагало на съдебния заседател
files -> Семинар на тема „Техники за управление на делата" 18 19 юни 2010 г. Хисар, Хотел „Аугуста спа" Приложение
files -> Чинция Бруно Елица Ненчева Директор Изпълнителен директор иче софия бкдмп приложения: програма
files -> 1. По пътя към паметник „1300 години България


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9




База данных защищена авторским правом ©obuch.info 2020
отнасят до администрацията

    Начална страница