Факултет по химични технологии катедра „Технология и електрохимични производства” д и п л о м е н п р о е к т


Очистване от серните съединения и ненаситени въглеводороди



страница6/29
Дата20.03.2024
Размер0.58 Mb.
#120719
1   2   3   4   5   6   7   8   9   ...   29
Diplomna rabota DimitarW LB
Свързани:
НОВА ИСТОРИЯ НА СРЕДНОВЕКОВНА ФРАНЦИЯ

3.1.1.1 Очистване от серните съединения и ненаситени въглеводороди


Изискванията към дълбочината на очистване от серни съединения за различните стадии на производство на водород са различни и зависят от условията, при които се води процеса и от използвания катализатор. Отравяне на никеловия катализатор се наблюдава още при съдържание на сяра 0,1% от масата на катализатора, въпреки че за покриване повърхността му е нужно около 1% сяра.
Равновесното съдържание на никелов сулфид при конверсия се снижава с увеличаване на температурата. За различните катализатори пределно допустимата концентрация на H2S в газа в зависимост от съдържанието на никел и активността на катализатора е (в мг/м3):

при 800 0С – от 1 до 60


при 850 0С – от 5 до 76
при 900 0С – от 25 до 120

Твърде чувствителен към отравяне със сероводород са катализаторите за нискотемпературна конверсия на въглеродния оксид, съдържащи медни и цинкови оксиди. Например при съдържание на сяра в газа 0,2 мг/ми обемна скорост 3000 ч-1 срокът на използване на катализатора НТК-4 е две години. Отчитайки увеличения обем на газа в процеса с 4-6 пъти, концентрацията на серните съединения в очистения газ, постъпващ за конверсия, се ограничава до 1 – 1,5 мг/м3. Още по-големи са изискванията към дълбочината на очистване на газа за нискотемпературната конверсия на метана. Съдържанието на сероводород в очистения газ в този случай не трябва да превишава 0,5 мг/м3.


В условията на парова конверсия, ненаситените въглеводороди образуват циклични структури и полимеризират с образуване на кокс, което води до блокиране на активните центрове на катализатора. Едновременно с това протичат реакции на хидрогениране и парова конверсия на ненаситени въглеводороди:

CnH2n + 2H2 → CnH2n+2


CnH2n + nH2O → nCO + 3nH2

Съдържанието на ненаситени въглеводороди в суровината се ограничава от съотношението на скоростта на тези реакции и скоростта на образуване на кокс.


Много серни съединения се разлагат термически при нагряване до 400 0С. Продуктите от терморазпада на серните съединения са сероводород и съответните олефини, но процесът е съпроводен с образуването на високомолекулни смолисти вещества. Например меркаптаните и дисулфидите се разлагат при 200 0С, но тиофена и сулфидите не се разлагат и при 400 0С. Ако в суровината има само термически неустойчиви серни съединения, очистването се провежда в един стадий с поглътител на основата на цинковия оксид. С негова помощ от газа се отделя сероводорода, серовъглерод и меркаптани, но не се отделят тиофена и сулфидите.
По-надеждна е двустепенната схема за извличане на серните съединения от въглеводородната суровина, включваща деструктивно хидриране на серните съединения и последващо поглъщане на сероводорода с цинков оксид.
В интервала 300 – 400 0С, в които се осъществява процеса на очистване, реакцията на хидриране на серните съединения е практически необратима.

В инсталациите за парова конверсия на природен газ или нефтозаводски газове, работещи при ниско налягане, със съдържание на ненаситени въглеводороди не повече от 0,5%, за очистване на серните съединения се използват контактни маси 481-Cu и 481-Zn. Процесът се води при 300-350 0С. Тези поглътители се зареждат в тарелкови реактори по слоеве, при което първият се използва за преобразуване на серните съединения в сероводород, а втората – за поглъщане на H2S. Следва да се отбележи, че и 481-Cu в значителна степен реагира и със сероводорода като го поглъща, а цинковият оксид поглъща и такива съединения като меркаптаните, серовъглерод и други. Необходимата дълбочина на очистване се достига при обемна скорост до 1000 м-1 като се отчете и общия обем на контактните маси.


При повишено налягане (2 – 3 MPa) в стадия на хидриране се използват модифицирани алумокобалтомолибденов и алумоникелмолибденов катализатор, намиращи приложение за хидрогенизационни процеси в нефтопреработката и нефтохимията.
Между серните съединения върху катализатора и сярата и водорода, намиращи се в газа се установява равновесие. При промяна на съдържанието на сяра или водород в газа равновесието се нарушава и е възможно отделяне на сяра от катализатора или поглъщане на сяра от газа. При очистването по двустепенната схема този процес обаче не дава отражение на общия ефект от очистката, доколкото след хидриращия катализатор следва поглътител на серните съединения на основата на цинкови оксиди. Взаимодействието на сероводорода и цинковия оксид при 350 – 400 0С и излишък на водород протича до край.
На основата на цинка, освен 481-Zn, се изработват поглътители ГИАП-10 и ГИАП-10-2. За очистване от сероводород е възможно използването също на отработен катализатор за нискотемпературна конверсия на въглеродния оксид НТК-4., съдържащ цинков оксид. Стандартният цинков оксид има малка относителна повърхност (4,2 – 6,6 м2/гр) и много ниска сярополгътимост (1,7 – 4,2%). Неговото използване като очистващ реагент е нецелесъобразно. Активираната форма на цинковия оксид се получава при разлагането на цинков карбонат или хидрооксид при 350 – 400 0С. При това се получава цинков оксид с относителна повърхност 32,8 м2/гр и серопоглътимост 32%, а при разлагане на цинков хидрооксид – относителна повърхност 26,9 м2/гр и серопоглъщаемост 21,9%. ГИАП-10 се получава на основа цинков карбонат, а 481-Zn – цинков хидрооксид. Въвеждането на меден оксид в катализатора позвалява реакционната температура да се намали до 260 -280 0С.
В схемата на инсталации, предвиждащи провеждане на конверсия на въглеводороди при 2,2 – 2,4 MPa, на стадия на очистка на серните съединения е целесъобразно да се използва алумо-никел-молибдено-силикатен катализатор и поглътител ГИАП-10. Тогава и за двата стадия условията на очистка са еднакви:
- температура 350 – 400 0С, обемна скорост 1000 ч-1, налягане 2,3-2,5 MPa.
Такива условия са благоприятни за хидриране на ненаситените въглеводороди, които се превръщат в съответните наситени въглеводороди по реакция:

CnH2n + H2 → CnH2n+2 + Q


Термодинамически в дадения температурен интервал е възможно също да протичат реакции на хидрокрекинг на наситените въглеводороди с образуване на метан:


CnH2n+2 + (n - 1)H2 →n CH4 + Q


В таблица 3 са дадени константите на равновесие и топлинните ефекти на реакцията на хидриране на ненаситените въглеводороди и хидрокрекинг на етан и пропан.


Както се вижда от таблицата, хидрирането на ненаситените въглеводороди в интервала 300 – 400 0С практически протича до край. Такива термодинамично благоприятни условия има и за хидрокрекинг на наситените въглеводороди, но хидрокрекинг на наситените въглеводороди C2 – C5 не протича на катализатори съдържащи сяра и при наличие на серни съединения в газа.
Табл. 3

Темпера-
тура, 0С

Реакция на хидриране

Реакции на хидро- крекинг

C2H4

C3H6

н-C4H8

изо-C4H8

C2H6

C3H8

200
300
400
500
600
700
800
900
1000

5,1.108
9,8.105
8,3.104
1,1.104
3,9.102
3,1.10
4,1
7,8.10-1
6,1.10-2

1,4.106
2,8.104
3,5.103
6,8.102
2,5.10
2,3
3,7.10-1
9,1.10-2
1,0.10-2

9,2.106
3,2.104
4,1.103
8,0.102
3,2.10
2,8
4,3.10-1
1,0.10--1
1,0.10-2

1,0.106
5,1.103
6,5.102
1,1.102
6,7
7,9.10-1
1,4.10-1
4,1.10-2
6,3.10-3

--
1,5.106
2,03.105
4,47.104
1,33.104
4,97.103
2,22.103
--
--

--
4,62.1011
1,04.1010
5,90.108
5,98.107
9,15.106
1,97.106
--
--

Q, kJ/mol

137

126

127

119

68

127

Лабораторните опити показали, че хидриране на ненаситените въглеводороди протича до край, в същото време хидрокрекинг на наситените въглеводороди не се наблюдава.
Реакцията на хидрокрекинг на серните съединения е екзотермична, но в предвид малките количества на тези съединения в суровината, топлинния ефект може да бъде пренебрегнат.
Продължителността на работа на катализатора, използван за очистване на суровината от серни съединения и ненаситени въглеводороди, обикновено е 2 – 3 години. Срокът на използване на поглътителя зависи от съдържанието на H2S в газа. Ако сяроуловяемостта на поглътителя е недостатъчна или концентрацията на серни съединения е висока, в схемата се предвижда включване на два последователно действащи апарата с поглътител.


Сподели с приятели:
1   2   3   4   5   6   7   8   9   ...   29




©obuch.info 2024
отнасят до администрацията

    Начална страница