Process Industry Supply Chains: Advances and Challenges-Nilay Shah /1-17


Coordination Supply chains decision an optimization model-Christoph Haeling /55-58/



страница4/5
Дата07.10.2016
Размер1.03 Mb.
#11160
1   2   3   4   5

9. Coordination Supply chains decision an optimization model-Christoph Haeling /55-58/

Координацията при обмена на информация и контролирането на материалните потоци са ключ към ефективното управление на Supply chain веригите.Комплекс от взаймодействия вътре във веригата и възникващите несигурности обхващащи Supply chain се явяват именно от координацията между съответните звена вътре в нея.

Тя може да бъде осъществена оптимизирайки потоците съставящи Supply chain веригата посредством методите на анализа. Използван е модел на смсеното целочислено линейно програмиране като инструмент при взимането на тактическите решения по отношение на редът , производството и транспорта на даденият продукт.

Тук се взимат под внимание множеството от различни условия при процеса на информационното обслужване и взимането на логически решения .Изготвянето и изпълнението на този вид моделиране се отличава от решенията взети от човека , при които е отчетен и потенциално неефективното решение .Набор от няколко методологични селекции отчитащи трудностите при решаването на проблемите при решаването на задачата на смесеното целочислено програмиране са представени като с това те допринасят при разрешаването на спеифичните проблеми при този род задачи.


Улесняването –подпомагането на движението на материалите са обект на разглеждане от Supply chain.

Управлението на Supply chain –веригите е концентрирано върху ефективността и изпълнителността на всички материални потоци а така също на тяхната информационна обезпеченост в рамките на веригата.

Основното предизвикателство пред Supply chain веригите се изразява в умелата координация на отделните звена вътре в нея т.е взаимодействието помежду им при различните нива от процеса на производството , осигуряването на необходимата и пълна информация при взимането на решенията като се прави подбор между набор от възможни решения.

Това благоприятства забележителна продуктивност , която се характеризира с високи нива на производство.


Целта на представената статия е да допринесе и подобри процесът на взимането на решения в средата на Supply chain.На практика оптимизационният модел рефлектира като цяло върху структурата на Supply chain веригите , интегрираща разнообразие от решения .Транспортната задача е дефинирана при процеса на моделиране като се взима в предвид адаптирането и специално към Batch процесите.

Modeling Supply chain interdependencies

Взаимозависимост пи моделирането на осигурителните вериги
На фиг.3 е илюстрирана схемата на взаимозависимост на стадиите при формирането на Supply chain веригите


фиг.3


По своята си същност Supply chain веигата се характеризира с набор от независими стадии , които могат най-грубо да бъдат разделени на три основни секции:
1.Осигуряване на необходимите ресурси
2.Процес по изработването на продукта
3.Дистрибуция
Решенията относно придобиването на ресурси и в последствие тяхното използване можв да се дефинира кати низ от три етапа, фиг.4:
1.Стратегическо ниво на вземане на решенията разглежда:

  • Обектите на обслужване;

  • Пророцес на вертикална и хоризонтално разширяване на мрежата

2.Тактическо планиране :



  • Селекция на доставчиците;

  • Нива на производства ;

  • Възлови пунктове при транспортирането;

  • Връзки между отделните производствени звена;

  • Дистрибуторски центрове;

  • Клиенти

3.Производство:




фиг.4

В контекста на процеса по взимането на решения вниманието е насочено в ситуацията когато Supply chain мрежата е вече конфигурирана т.е установена. В тази обстановка ударението е към формирането на тактиката като внимането е концентрирано към взаимодействието при формирането на реда ,производството и транспортирането на продуктите ,решенията взимани при наличието на набор от благопрятни изхода.от прецтическа гледна точка интерес би представлявал взимането на необходимите решения при транспорта на продуктите така , че да бъде удовлетворена установената конфигурациа от транспортни връзки.
Фигура 5 показва общата структура на Supply chain , при която информационните и материални потоци функционират , както и взаимовръзките между отделните производства и респективно отделните стадии от които се състоят.

Фиг.5


Литература:

1. Process Industry Supply Chains: Advances and Challenges-Nilay Shah /1-17/
1.1 Ahmed, S. and N.V. Sahinidis, 1998, Robust process planning under uncertainty, Ind.Eng. Chem. Res., 37, 1883-1892. (1)
1.2 Ahmed, S. and N.V. Sahinidis, 2003, An approximation scheme for stochastic integer programs arising in capacity expansion,

Ops. Res., 51, 461-47. (1)
1.3 Applequist, G.E., J.F. Pekny and G.V. Reklaitis, 2000, Risk and uncertainty in managing chemical manufacturing supply chains,

Computers chem. Engng., 24, 2211-2222. (1)
1.4 Backx, T., O. Bosgra and W. Marquardt, 1998, Towards intentional dynamics in supply chain conscious process operations,

AIChE Symp. Ser. 320(94), 5-20. (1)
1.5 Beamon, B.M., 1998, Supply chain design and analysis: models and methods, In.t J. Prod. Econ.55, 281-294. (1)

1.6 Berning, G., M. Brandenburg, K. Gursoy, V. Mehta and F,-J. Tölle, 2002, An integrated system for supply chain optimisation in the chemical process industry,



OR Spectrum, 24, 371-401. (1)
1.7 Blau, G., B. Mehta, S. Bose, J. Pekny, G. Sinclair, K. Keunker and P. Bunch, 2000, Risk management in the development of new products in highly regulated industries.

Comput. Chem. Eng., 24, 1005-1011. (1)
1.8 Bok, J.K., I.E. Grossmann and S. Park, 2000, Supply chain optimization in continuous flexible process networks,

Ind. Eng. Chem. Res., 39 1279-1290. (1)
1.9 Bose, S. and J.F. Pekny, 2000, A model predictive framework for planning and scheduling problems, a case study of consumer goods supply chain,

Computers chem. Engng., 24, 329-335. (1)
1.10 Brown, G.G., G.W. Graves and M.D. Honczarenko, 1987, Design and operation of a multicommodity production/distribution system using primal goal decomposition,

Management Science, 33, 1469-1480. (1)
1.11 Camm, J.D., T.E. Chorman, F.A. Dill, J.R. Evans, D.J. Sweeney, G.W. Wegryn, 1997, Blending OR/MS, judgment, and GIS: restructuring P&G’s supply chain,

Interfaces, 27:1, 128-142.
1.12 D’Alessandro, A.J. and A. Baveja, 2000, Divide and conquer: Rohm and Haas’ response to a changing specialty chemicals market,

Interfaces, 30:6, 1-16. (1)
1.13 Forrester, J., 1958, Industrial dynamics: a major breakthrough for decision makers. Harvard Business Review, July-August, 37-66. (1)
1.14 García-Flores, R. and X.Z. Wang, 2002, A multi-agent system for chemical supply chain simulation and management support,

OR Spectrum, 24, 343-370. (1)
1.15 Geoffrion, A.M. and G.W. Graves, 1974, Multicommodity distribution system design by Benders decomposition,

Management Science, 20, 822-844. (1)
1.16 Geoffrion, A.M. and T.J. van Roy, 1979, Caution: common sense planning methods can be hazardous to your corporate health,

Sloan Management Review, Summer, 31-42. (1)
1.17 Gjerdrum, J., N. Shah and L.G. Papageorgiou, 2000, A combined optimisation and agent-based approach for supply chain modelling and performance assessment,

Production Planning and Control, 12, 81-88. (1)

1.18 Gnoni, M.G., R. Iavagnilio, G. Mossa, G. Mummolo and A. Di Leva, 2003, Production planning of a multi-site manufacturing system by hybrid modelling:

A case study from the automotive industry,

International Journal of Production Economics, 85, 251-262. (1)
1.19 Gupta, A., and C.D. Maranas, 2000, A two-stage modeling arid solution framework for multisite midterm planning under demand uncertainty,

Ind. Eng. Chem. Res., 39, 3799-3813. (1)
1.20 Gupta, A., C.D. Maranas and C.M. McDonald, 2000, Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management,

Computers and Chemical Engineering, 24, 2613-2621. (1)
1.21 Hung, W.Y., N. Samsatli and N. Shah, 2003a, Object-oriented dynamic supply chain modelling incorporated with production scheduling,

Proc. International Conference on Industrial

Engineering and Production Management (IEPM 03), Porto, Portugal, 304-313. (1)
1.22 Hung W.Y., S. Kucherenko, N. Samsatli and N. Shah, 2003b, An efficient sampling technique for stochastic supply chain simulations,

Proc. 2003 Summer Computer Simulation

Conference (SCSC 2003), July 2003, Montreal, , Simulation Series 35(3), 101-106. (1)
1.24 Iyer, R.R. and I.E. Grossmann, 1998, A bilevel decomposition algorithm for long-range planning of process networks,

Ind. Eng. Chem. Res., 37, 474-481. (1)
1.25 Jackson, J.R. and I.E. Grossmann, 2003, Temporal decomposition scheme for nonlinear multisite production planning and distribution models,

Ind. Eng. Chem. Res., 42, 3045-3055. (1)
1.26 Julka, N., R. Srinivasan and I. Karimi, 2002a, Agent-bases supply chain management-1: framework, Computers chem.

Engng., 26, 1755-1769. (1)


1.27 Julka, N., R. Srinivasan and I. Karimi, 2002b, Agent-bases supply chain management-1: a refinery application,

Computers chem. Engng., 26, 1771-1781. (1)


1.28 Kallrath J., 2002a, Combined strategic and operational planning – an MILP success story in chemical industry,

OR Spectrum, 24, 315-341. (1)
1.29 Kallrath J., 2002b, Planning and scheduling in the process industry,

OR Spectrum, 24, 219-250.
1.30 Karabakal N., A. Gunal, and W. Ritchie, 2000, Supply-chain analysis at Volkswagen of America,

Interfaces, 30(4), 46-55. (1)


1.31 Kegler, G. P. C. Jones, R. D. Traub and T. J. Lowe, 2003, Managing the seed-corn supply chain at Syngenta,

Interfaces, 33:1, 80-90. (1)
1.32 Lambert, D.M. and M. Cooper, 2000, Issues in supply chain management,

Ind. Mktg. Mgt., 29, 65-83. (1)
1.33 Lin, G., M.Ettl, S. Buckley, S. Bagchi, D.D. Yao, B.L. Naccarato, R. Allan., K.Kim and L.Koenig, 2000, Extended-enterprise supply-chain management at IBM personal systems group and other divisions, Interfaces, 30, 7-25. (1)
1.34 Liu, M.L. and N.V. Sahinidis, 1995, Computational trends and effects of approximations in an MILP model for process planning,

Ind. Eng. Chem. Res., 34, 1662-1673. (1)
1.35 Liu, M.L. and N.V. Sahinidis, 1996, Optimization in process planning under uncertainty,

Ind. Eng. Chem. Res., 35, 4154-4165. (1)

1.36 McDonald, C.M. and I.A. Karimi, 1997, Planning and scheduling of parallel semicontinuous processes. 1. Production planning,



Ind. Eng. Chem. Res., 36, 2691-2700. (1)
1.37 Moro L.F.L., A.C. Zanin and J.M. Pinto, 1998, A planning model for refinery diesel production

Comput. Chem. Eng. 22, S1039-S1042. (1)
1.38 Neumann, K., C. Schwindt and N. Trautmann, 2002, Advanced production scheduling for batch plants in process industries,

OR Spectrum, 24, 251-279. (1)
1.39 Neiro, S.M.S. and J.M. Pinto, 2003, Supply chain optimisation of petroleum refinery complexes,

Proc.4thIntl. Conf. on Foundations of Computer-Aided Process Operations, 59-72. (1)
1.40 Perea-Lopez E., B.E.Ydstie and I.E. Grossmann, 2001, Dynamic modelling and decentralised control of supply chains,

Ind. Eng. Chem. Res., 40, 3369-3383. (1)
1.41 Perea-Lopez E., B.E.Ydstie and I.E. Grossmann, 2003, A model predictive control strategy for supply chain optimisation,

Computers and Chemical Engineering, 27, 1201-1218. (1)
2. Simultaneous planning for new product development and design of manufacturing facilities. -Ignacio Grossman
2.1 Asenjo, J.A., Montana, J.M., Vecchietti, A.R., Iribarren, O.A., Pinto, M.P. (2000). Strategies for the Simultaneous Optimization of the Structure and the Process Variables of a Protein Production

Plant. Computers Chem. Engng., 24, 2277. (2)


2.2 Blau, G., Metha, B., Bose, S., Pekny, J., Sinclair, G., Keunker, K., Bunch, P. (2000). Risk Management in the Development of New Products in Highly Regulated Industries.

Computers Chem Engng, 24, 659. (2)
2.3 Fisher, M.L. (1985). An Applications Oriented Guide to Lagrangean Relaxation, Interfaces, 15:2, 10-21 (2)
2.4 Guignard, M., Kim, S. (1987). Lagrangean Decomposition: A Model Yielding Stronger Lagrangean

Bounds. Mathematical Programming, 39, 215. (2)


2.5 Jain, V., Grossmann, I. E. (1999). Resource-constrained Scheduling of Tests in New Product Development.

Ind. Eng. Chem. Res., 38 (8), 3013. (2)
2.6 Maravelias, T.C., Grossmann, I.E. (2001). Simultaneous Planning for New Product Development and Batch Manufacturing Facilities.

Submitted for publication at Ind. Eng. Chem. Res. (2)


2.7 Norton, L. C., Grossmann, I. E. (1994). Strategic Planning Model for Complete Process Flexibility.

Ind. Eng. Chem. Res., 33 (1), 69. (2)
2.8 Papageorgiou, L.G., Rotstein, G.E., Shah, N. (2001). Strategic Supply Chain Optimization for the

Pharmaceutical Industries. Ind. Eng. Chem. Res., 40, 275. (2)


2.9 Subramanian, D., Pekny, J.F., Reklaitis, G.V. (2000). A Simulation-Optimization Framework for Addressing Combinatorial and Stochastic Aspects of

an R&D Pipeline Management Problem.



Computers Chem Engng, 24, 1005. (2)
3. A combined optimization and agent-based approach to supply chain modeling and performance assessment.-Nilay Shah
3.1 BALASUBRAMANIAN, S., and NORRIE, D. H., 1996, Multi-agent planning and coordination for distributed concurrent engineering.

International Journal of Cooperative Information Systems, 5, 153± 179. (3)
3.2 BARBUCEANU, M., and FOX,M. S., 1995, The architecture of an agent based infrastructure for agile manufacturing.

In Proceedings of IJCAI-95. (3)

3.3 BARBUCEANU, M., FOX, M. S., and GRUNINGER, M., 1996, An organisation ontology for

enterprise modeling: preliminary concepts for linking structure and behaviour.



Computers in Industry, 29, 123± 134. (3)

3.4 BARBUCEANU, M., GRAY, T., and MANKOVSKI, S., 1999, Role of obligation in multiagent coordination.



Applied Arti® cial Intelligence, 13, 11± 38. (3)
3.5 EKENBERG, L., DANIELSON, M., and BOMAN, M., 1996, From local assessments to global rationality.

International Journal of Cooperative Information Systems, 5, 315± 331. (3)
3.6 FULKERSON, B., and STAFFEND, G., 1997, Decentralized control in the customer focused enterprise.

Annals of Operations Research, 75, 325± 333. (3)

3.7 GJ ERDRUM, J ., 1998, Multiagent systems supporting distributed



J. Gjerdrum et al. (3)
4. Pharmaceutical supply chains: key issues and strategies for optimization -Nilay Shah/25-40/

4.1 Anon (2002). Summary of the executive session on emergency preparedness and the pharmaceutical supply chain. Am. J. Health-System Pharmacy, 59 (3), 247-253.

4.2 Applequist, G.E., J.F. Pekny and G.V. Reklaitis (2000). Risk and uncertainty in managing chemical manufacturing supply chains. Comput. Chem. Eng., 24, 2211-2222. (4)

4.3 Ballance, R. J. Pogany and H. Forstner (1992). The World’s pharmaceutical industries. Edward Elgar (for UNIDO), UK. (4)

4.4 Barbosa-Povoa, A.P.F.D. and C.C. Pantelides (1999). Design of multipurpose production facilities: A RTN decomposition-based algorithm. Comput. Chem. Eng., 23, S7-S10. (4)

4.5 Bhagwat, Y. and F.T. Griggs (1995). Analysis of riskiness of pharmaceutical industry firms. J. Res. Pharm. Econ., 6, 65-76. (4)

4.6 Blau, G., B. Mehta, S. Bose, J. Pekny, G. Sinclair, K. Keunker and P. Bunch (2000). Risk management in the development of new products in highly regulated industries. Comput. Chem. Eng., 24, 1005-1011. (4)

4.7 Booth, R. (1999). The global supply chain. FT healthcare management report. Financial Times Business Ltd, London. (4)

4.8 Butler, R. (2002). The end of the blockbuster? Chemistry & Industry, 9, 9-10. (4)

4.9 Clay, R.L. and I.E. Grossmann (1997). A disaggregation algorithm for the optimization of stochastic planning models. Comput. Chem. Eng., 21 751-774. (4)

4.10 Eli Lilly (2003). newsroom.lilly.com/news/Financial/ 2003-01-23_q402sales_fullyear_2002.html (4)

4.11 Eppen, G.D., R.K. Martin, and L. Schrage (1987). A scenario approach to capacity planning. Op. Res., 37, 517–527. (4)

4.12 Gatica, G., N. Shah and L.G. Papageorgiou (2001). Capacity planning under clinical trials uncertainty for the pharmaceutical industries. Proc. ESCAPE-11, Kondig, Denmark, 865-870. (4)
4.13 Gatica, G., L.G. Papageorgiou and N. Shah (2002a). Capacity planning under uncertainty for the pharmaceutical industry. Submitted to Trans. IChemE. Part A. (4)
4.14 Gatica, G., L.G. Papageorgiou and N. Shah (2002b). An aggregation approach for capacity planning under uncertainty for the pharmaceutical industry. Submitted to FOCAPO-2003. (4)
4.15 Gjerdrum, J., Q.W.Z. Jalisi, L.G. Papageorgiou and N. Shah (2000). Dynamic simulation of physical and business processes for supply chain improvement. Proc. 5th Annual Conf. Ind. Eng. Theory, Applications and Practice, Hsinchu, Taiwan. (4)
4.16 Gjerdrum J., N. Shah and L.G. Papageorgiou (2001). New Product Introduction Supply Chain Planning. In Olli-Pekka Hilmola (editor): Contemporary Research Issues in New Product Introduction. Acta Wasaensia, 77, 25-49. (4)
4.17 Grabowski, H. (1997). The effect of pharmacoeconomics on company research and development decisions. Pharmacoeconomics, 11, 389-397. (4)
4.18 Henning, G.P., N.B. Camussi and J. Cerda (1994). Design and planning of multipurpose plants involving nonlinear processing networks. Comput. Chem. Eng., 18, 129-152. (4)
4.19 Jain, V. and I.E. Grossmann (1999). Resource-constrained scheduling of tests in new product development. Ind. Eng. Chem. Res., 38, 3013-3026. (4)
4.20 Kall, P., and S.W. Wallace (1994). Stochastic Programming. Wiley, New York. (4)

4.21 Lazaro, M., A. Espuna and L. Puigjaner (1989). A comprehensive approach to production planning in multipurpose batch plants. Comput. Chem. Engng., 13, 1031-1047. (4)


4.22 Lerwent, J. (1994). The new pharmaceutical paradigm: scientific management at Merck. Harvard Business Review, Jan-Feb, 88-89. (4)
4.23 Linninger, A.A., S. Ali and G. Stephanopoulos (1996). Knowledge-based validation and waste management of batch pharmaceutical process designs. Comput. Chem. Eng., 20, S1431-S1436. (4)
4.24 Maravelias, C.T. and I.E. Grossmann (2001). Simultaneous planning for new product development and batch manufacturing facilities. Ind. Eng. Chem. Res., 40, 6147-6164. (4)
4.25 Mauderli, A. and D.W.T. Rippin (1979). Production planning and scheduling for multipurpose batch chemical plants. Comput. Chem. Eng., 3, 199-206. (4)
4.26 Mauderli, A. and D.W.T. Rippin (1980). Scheduling production in multipurpose batch plants : the Batchman program, Chem. Eng. Progress, 4, 37-45. (4)
4.27 Moser, M. G. Calderari, P. Morini (2000). Cleaning validation of a multipurpose plant for active pharmaceutical ingredient bulk production. Chimia, 54, 731-733. (4)
4.28 Mulvey, J.M., D.P. Rosenbaum and B. Shetty (1997). Strategic financial risk management and operations research. EJOR, 97, 1-16. (4)
4.29 Myers, S. (1999). Measuring pharmaceutical risk and the cost of capital. In: Risk and return in the pharmaceutical industry; Eds. J. Sussex and N. Marchant, OHE., London, 59-76. (4)
4.30 Papageorgaki, S. and G.V. Reklaitis (1990). Optimal design of multipurpose batch plants, Ind. Eng. Chem. Res., 29, 2054-2062. (4)
4.31 Papageorgiou, L.G. and C.C. Pantelides (1996). Optimal campaign planning/scheduling of multipurpose batch/semicontinuous tasks. 1. Mathematical formulation. Ind. Eng. Chem. Res., 35, 488-509. (4)
4.32 Papageorgiou, G.E. Rotstein and N. Shah (2001).Strategic supply chain optimization for the pharmaceutical industries. Ind. Eng. Chem. Res., 40, 275-286. (4)
4.33 Reklaitis, G.V. (1991). Perspectives on scheudling and planning of process operations. Proc. PSE-1991, Montebello, Canada. (4)
4.34 Rotstein, G.E., L.G. Papageorgiou, N. Shah, D.C. Murphy and R. Mustafa (1999).A product portfolio approach in the pharmaceutical industry. Comput. Chem. Eng., 23, S883-S886. (4)
4.34 Schmidt, C.W. and I.E. Grossmann (1996). Optimization models for the scheduling of testing tasks in new product development. Ind. Eng. Chem. Res., 35, 3498-3510. (4)
4.35 Shah, N. and C.C. Pantelides (1991). Optimal long-term campaign planning and design of batch plants. Ind. Eng. Chem. Res, 30, 2308-2321. (4)
4.36 Shah, N. and C.C. Pantelides (1992). Design of multipurpose batch plants with uncertain production requirements. Ind. Eng. Chem. Res., 31, 1325-1337. (4)
4.37 Shah, N. (1998). Single- and multisite planning and scheduling: current status and future challenges. AIChE Symp. Ser. 320(94), 75-90. (4)
4.38 Shah, N., N.J. Samsatli, M. Sharif, J.N. Borland and L.G. Papageorgiou (2000). Modelling and optimisation for pharmaceutical and fine chemical process development. AIChE Symp. Ser. 323(96) 31-45. (4)
4.39 Sparrow, R.E., G.J. Forder and D.W.T. Rippin (1975). The choice of equipment sizes for multiproduct batch plants: heuristics versus branch-and-bound. Ind. Eng. Chem. Process Des. Dev., 14, 197-203. (4)
4.40 Stephanopoulos, G., S. Ali, A. Linninger and E. Salomone (2000). Batch process development: challenging traditional approaches, AIChE Symp. Ser. 323(96) 46-57. (4)
4.41 Subramanian, D., J.F. Pekny and G.V. Reklaitis (2001). A simulation-optimization framework for Research and Development Pipeline management. AIChE J., 47, 2226-2242. (4)
4.42 Thwaites R. and R.J. Townsend (1998). Pharmacoeconomics in the new millenium. Pharmacoeconomics, 13, 175-180. (4)
4.43 van der Vorst, J.G.A.J, A.J.M. Beulens and P. van Beek (2000). Modelling and simulating multi-echelon food systems. EJOR, 122, 354-366. (4)
4.44 Voudouris, V.T.and I.E. Grossmann (1992). Mixed-integer linear-programming reformulations for batch process design with discrete equipment sizes. Ind. Eng. Chem. Res., 31, 1315-1325. (4)
4.45Yeh, N.C. and G.V. Reklaitis (1987). Synthesis and sizing of batch/semicontinuous processes: single product plants. Comput. Chem. Eng., 11, 639-654. (4)

Каталог: www systems engineerig laboratory -> CV People systmeng
www systems engineerig laboratory -> На работа в науката и администрацията
www systems engineerig laboratory -> Оптимални разписания при многопродуктови периодични химични системи
www systems engineerig laboratory -> Проф. Д-р асен златаров
www systems engineerig laboratory -> 1. Кои са решаващите фактори за формиране на черноморската флора и фауна?
www systems engineerig laboratory -> Здраве и безопасност в пристанищни райони
www systems engineerig laboratory -> Цонка Консулова
www systems engineerig laboratory -> Планиране в екологията и реновация на пристанищата в България
www systems engineerig laboratory -> Инструменти за екологичен мениджмънт на пристанищни райони
CV People systmeng -> Algorithm for Setting Arbitrarily Structured Chemical Industrial Production in a Universal Chemical Industrial System
CV People systmeng -> Process Industry Supply Chains: Advances and Challenges-Nilay Shah /1-17


Сподели с приятели:
1   2   3   4   5




©obuch.info 2024
отнасят до администрацията

    Начална страница