Резюмета на научните трудове на гл ас д-р Нели Минчева за участие в конкурса за доцент по професионално направление

Размер52.33 Kb.
Резюмета на научните трудове на гл. ас. д-р Нели Минчева
за участие в конкурса за доцент по професионално направление

4.2. Химически науки, специалност ”Аналитична химия”,

обявен от Минно-геоложкия университет „Св. Иван Рилски”-София,

в ДВ, бр.13 от 14.02.2012 г.
I. Научни статии по темата на конкурса (номерацията съответства на представения списък на научните трудове)
6. N. Mincheva, D. Mehandjiev, M. Mitewa, “Mixed palladium(III)-nickel(II) and palladium(II)-copper(II) complex salts with biuret and the N4-macrocycle cyclam”, J. Chem. Res(S), (1998) 434-435. (IF 0.550)

Abstract: Three paramagnetic mixed salts of palladium(III) and palladium(II) complexes with biuret and Cu(cyclam)2+ or Ni(cyclam)2+ were obtained and their magnetic properties were studied by EPR spectroscopy and magnetochemistry.
7. N. Mincheva, L. Ballester, L. Antonov, M. Mitewa, “A new dimeric Pd(III)Pd(II) complex with 7,7,8,8-tetracyanoquinodimethane (TCNQ)”, Synth. React. Inorg. Met.-Org. Chem. 30(9) (2000) 1643-1651. (IF 0.504)

Abstract: A dimeric Pd(III)-Pd(II) complex with TCNQ (7,7,8,8-tetracyano-p-quinodimethane) was prepared in an aqueous basic solution of pH~9. This compound was characterized by elemental analysis and spectroscopic methods – IR, UV-Vis, EPR, magnetochemistry and ESCA. The results indicate that the formula of this complex is Pd2(TCNQ)3(OH)2. The ligand TCNQ may exist in two different modes – as radical-anion TCNQ• and neutral molecule TCNQ.
8. N. Mintcheva, Y. Nishihara, M. Tanabe, K. Hirabayashi, A. Mori, K. Osakada, “Si-C bond activation of ArMe2SiOH promoted by a bromoplatinum(II) complex and Ag2O. Aryl group transfer from silicon to platinum”, Organometallics, 20 (2001) 1243-1246. (IF 3.888)

Abstract: [PtBr(PEt3)3]BF4 (1) reacts with an excess of dimethyl{4-(trifluoromethyl)phenyl}silanol in the presence of Ag2O and 4 Å molecular sieves at 60 °C to afford trans-Pt(C6H4CF3-4)2(PEt3)2 (2). The reaction without molecular sieves and that with addition of a small amount of water give a mixture of 2 and [Pt2(µ-OH)2(PEt3)4](BF4)2 (3). The organic products of the reaction are composed of ArSiMe2-O-(SiMe2-O)n-SiMe2Ar (Ar = C6H4CF3-4, n = 0, 1, 2) and cyclooligodimethylsiloxanes in lesser amounts. The obtained complexes were characterized by NMR spectroscopy and X-ray crystallography.
9. N. Mintcheva, Y. Nishihara, A. Mori, K. Osakada, “Reactions of HOSiMe2Ar with Pt-PPh3 complexes leading to Si-C bond activation or formation of a siloxoplatinum complex”, J. Organomet. Chem., 629 (2001) 61-67. (IF 2.205)

Abstract: PtI2(PPh3)2 reacts with HOSiMe2(C6H4CF3-4) at 60°C in the presence of AgBF4 to give a mixture of trans-PtI(C6H4CF3-4)(PPh3)2 (1) and [Pt2(µ-I)2(PPh3)4](BF4)2 (2). Each of the complexes is isolated and characterized by X-ray crystallography and/or NMR spectroscopy. The 31P{1H}-NMR study of the reaction of AgBF4 with PtI2(PPh3)2 in acetone-d6 revealed the formation of trans-[PtI(PPh3)2(acetone)]BF4 (3) although isolation of the cationic complex was not feasible due to its facile conversion to 2. Addition of HOSiMe2(C6H4CF3-4) and Ag2O to a toluene solution of trans-PtI(Ph)(PPh3)2 causes replacement of the iodo ligand with the siloxo group to afford trans-[Pt(Ph){OSiMe2(C6H4CF3-4)}(PPh3)2] (4). Crystallographic results of 4 show the coordination of the phenyl, siloxo, and PPh3 ligands to the square-planar Pt center with a large Pt‒O‒Si angle. Complex 4 does not decompose below 60°C in a toluene solution, but reacts with CH2Cl2 and CHCl3 at room temperature to form trans-PtCl(Ph)(PPh3)2 (5).
10. N. Mintcheva, L. Antonov, M. Mitewa, G. Ponticelli, M.T. Cocco, “Complexation and redox processes during the course of AuCl4--bilirubin interaction in aqueous-basic and methanolic media”, Trans. Met. Chem. 28 (2003) 316 – 322. (IF 1.166)

Abstract: The AuCl4- - bilirubin (BR) interaction, both in aqueous-basic and methanolic media was studied using UV-Vis, EPR and 197Au mӧssbauer spectroscopy. It was established that during the course of the reaction multistep redox and complexation processes occur. BR is oxidized according the reaction scheme: Bilirubin →Biliverdin→Purpurin accompanied with Au(III) reduction to Au(0) and complexation, resulting in spontaneous formation of an Au3PRN precipitate. By means of quantitative UV-Vis spectroscopic studies some of the rates and stability constants were determined. The most probable reaction scheme was proposed.
11. N. Mintcheva, M. Mitewa, V. Enchev, Y. Nishihara, “New stable complexes of Au(III) with biuret. X-ray structure of cis-[Au(Biu)Br2]PPh4 and ab initio investigation of cis-[Au(Biu)X2]-“, J. Coord. Chem. 56 (2003) 299 – 305. (IF 1.932)

Abstract: Two anionic complexes of Au(III) with the bioligand biuret, cis-[Au(Biu)X2]- (BiuH2=biuret, X=Cl, Br) have been synthesized and characterized. The molecular structure of cis-[Au(Biu)Br2]PPh4 has been determined by X-ray diffraction analysis. The complex anion has square-planar geometry with one deprotonated biuret dianion coordinated bidentately to the metal center via the terminal amino nitrogen atoms and two bromide ions in cis position. There are no significant intermolecular Au-Au interactions in the solid state. Ab initio calculations of the geometric structure at different computational levels for biuret and both anionic complexes as well as an IR study of the structures obtained are performed.
13. N. Mintcheva, M. Tanabe, K. Osakada, “Arylpalladium complexes with a silsesquioxanate ligand. Preparation and structures in solid state and in solution”, Organometallics, 26 (2007) 1402 - 1410. (IF 3.888)

Abstract: The reaction of the incompletely condensed silsesquioxane (c-C5H9)7Si7O9(OH)3 with [Pd(C6H3Me2-2,4)(I)(bpy)] produced a complex with a Pd–O bond [Pd(C6H3Me2-2,4){(c-C5H9)7Si7O10(OH)2}(bpy)]. Palladium complexes having a silsesquioxanate ligand, [Pd(Ar){R7Si7O10(OH)2}(tmeda)] (Ar = C6H5, C6F5 or C6H3F2-2,4; R = c-C5H9 or i-C4H9), were prepared by the reaction of the silsesquioxane R7Si7O9(OH)3 with arylpalladium iodo complexes, [Pd(Ar)(I)(tmeda)] (tmeda=N,N,N’,N’-tetramethylethylene-diamine), in the presence of Ag2O. These complexes were characterized by multinuclear (1H, 13C{1H}, 19F{1H}, and 29Si{1H}) NMR spectroscopy, and the structure of [Pd(C6F5){(c-C5H9)7Si7O10(OH)2}(tmeda)] was determined by X-ray crystallography. Temperature-dependent 1H and 19F{1H} NMR spectra revealed the dynamic behavior of the complexes on the NMR time scale.
14. L. Ilieva-Gencheva, G. Pantaleo, N. Mintcheva, I. Ivanov, A.M. Venezia, D. Andreeva, “Nano-structured gold catalysts supported on CeO2 and CeO2-Al2O3 for NOx reduction by CO: Effect of catalyst pretreatment and feed composition”, J. Nanosci. Nanotechnol. 8 (2008) 867 – 873. (IF 1.44)

Abstract: Gold catalysts supported on ceria and ceria-alumina were studied in NOx reduction by CO. Gold was loaded using deposition-precipitation method. The ceria-alumina (20 wt% alumina) support was synthesized by co-precipitation. The average size of gold and ceria nano-particles was bellow 10 nm. It was established that the type of pretreatment do not have a substantial effect on the catalytic activity. The presence of O2 in the feed leads to a high conversion of CO to CO2 but no NO conversion was registered. Both NO and CO conversion was increased adding H2 to the feed. The catalytic activity became higher upon adding higher amount of H2. Supplementary to the main reaction parallel reactions took place. Bellow 200 оC N2O formation and at 250 оC and above the NH3 formation was detected. At around 200 оC it was established 100% selectivity to N2. The addition of water to the feed influenced positively the CO conversion and did not influence negatively the conversion of NO. The selectivity to N2 at around 200 оC remained 100% independent of the presence of moisture. Alumina in the mixed support prevents the sintering of both gold and ceria nano-particles. The results obtained make the catalysts containing gold supported on ceria-alumina promising for practical application.
15. M. Tanabe, K. Mutou, N. Mintcheva, K. Osakada, “Preparation and 29Si{1H} NMR Studies of Palladium Complexes with a Silsesquioxanate Ligand”, Organometallics, 27 (2008) 519 – 523. (IF 3.888)

Abstract: Reaction of an incompletely condensed silsesquioxane trisilanol, (c-C5H9)7Si7O9(OH)3, with trans-[Pd(I)(Ar)(PMe3)2] in the presence of Ag2O yielded arylpalladium complexes with a monodentate O-coordinated silsesquioxanate ligand, trans-[Pd{O10Si7(c-C5H9)7(OH)2}(Ar)(PMe3)2] (4a: Ar = Ph, 4b: Ar = C6F5). X-ray crystallographic results of 4b showed trans coordination of the pentafluorophenyl ligand and the O-coordinated silsesquioxanate ligand to the square-planar Pd(II) center. Variable-temperature 1H, 19F{1H}, and 29Si{1H} NMR spectra of 4a and 4b revealed dynamic behavior of the molecules in solution.
16. N. Mintcheva, “Platinum complexes with silsesquioxanes – synthesis, characterization and properties”, Annual of the University of Mining and Geology, 52, part II, (2009) 195-199.

Резюме. Синтезиран и изолиран е нов платинов комплекс със силсескиоксан. Неговият състав и структура са определени с помощта на инфрачервена спектроскопия, ядрен магнитен резонанс и елементен анализ. Установено е, че силсескиоксанът действа като монодентатен лиганд и се координира към платиновия център чрез кислородния атом от депротонираната силанолна група (Si-OH). Изследвана е термичната стабилност на този комплекс и е намерено, че при нагряване в разтвор комплексът претърпява обратими и необратими промени, свързани най-вероятно с конформационни превръщания на молекулата и разпадане на комплекса, съответно.
17. N. Mintcheva, M. Tanabe, K. Osakada, I. Georgieva, T. Mihailov, N. Trendafilova, “Synthesis and characterization of a dinuclear platinum complex with silsesquioxanate ligand”, J. Organomet. Chem., 695 (2010) 1738 - 1743. (IF 2.205)

Abstract: The first dinuclear platinum complex with a silsesquioxanate ligand {[Pt(Ph)(PEt3)2]2O11Si7(c-C5H9)7(OH)} was synthesized by reaction of incompletely condensed silsesquioxane, (c-C5H9)7Si7O9(OH)3 with trans-PtI(Ph)(PEt3)2. Multinuclear (1H, 13C, 29Si and 31P) NMR data clearly show two unequivalent platinum moieties (Pt(Ph)(PEt3)2) bridged by bulky silsesquioxanate ligand. DFT calculations were performed to analyse the molecular structure and NMR properties of the new platinum complex.
18. N. Mintcheva, “The role of auxiliary phosphine ligands on the structure and properties of platinum-silsesquioxane complexes”, Annual of the University of Mining and Geology, 53, part II, (2010) 133-136.

Резюме. Получени са нови платинови комплекси с частично кондензирания силсескиоксан (c-C5H9)7Si7O9(OH)3 и със спомагателните лиганди PPh2Ме и PPh3. Тези комплекси са част от серията монодентатни силсескиоксанови комплекси от вида Pt{O10Si7(cyclo-C5H9)7(OH)2}(Ph)(PR)2, където R = Me3, Et3, Me2Ph, Ph2Me, Ph3. Структурата на новосинтезираните комплекси е определена чрез инфрачервена спектроскопия и ядрен магнитен резонанс. Показано е влиянието на фосфиновите лиганди върху структурата и свойствата на платина-силсескиоксановите комплекси от посочената серия.
19. M. Tanabe, K. Mutou, N. Mintcheva, K. Osakada, “Preparation and reactivity of an O,O-chelating Silsesquioxane-Palladium Complex”, J. Organomet. Chem., 696 (2011) 1211-1215. (IF 2.205)

Abstract: An incompletely condensed silsesquioxane trisilanol (c-C5H9)7Si7O9(OH)3 reacts with [PdI2(bpy)] (bpy = 2,2’-bipyridyl) in the presence of Ag2O to produce a palladium complex with an O,O-chelating silsesquioxanate ligand, [Pd{O11Si7(c-C5H9)7(OH)}(bpy)] (1). The reaction of Ph2SiClH with 1 in 2:1 ratio causes disilylations of the silsesquioxanate ligand, forming [PdCl2(bpy)]. Addition of p-cresol to a solution of 1 yields the silsesquioxane trisilanol and [Pd(OC6H4CH3-p)2(bpy)].
20. N. Mintcheva, M. Tanabe, K. Osakada, “Synthesis and characterization of platinum silsesquioxanate complexes and their reaction with arylboronic acid”, Organometallics, 30 (2011) 187-190. (IF 3.888)

Abstract: Phenyl(iodo)platinum complexes having a 2,2’-bipyridine (bpy) or 1,2-bis(diphenylphosohino)ethane (dppe) ligand react with incompletely condensed silsesquioxane, (c-C5H9)7Si7O9(OH)3 in the presence of Ag2O to yield platina-silsesquioxane complexes, [Pt{(c-C5H9)7Si7O10(OH)2}(C6H5)(L)] (1, L = bpy; 2, L = dppe). NMR spectroscopy revealed their square-planar structures with an O-coordinated silsesquioxanate ligand and O‒H•••O hydrogen bonds within the ligand. Both complexes undergo transmetalation of p-methoxyphenyl boronic acid to afford unsymmetrical diarylplatinum complexes, [Pt(C6H4OCH3-p)(C6H5)(L)] (3, L = bpy; 4, L = dppe).
21. N. Mintcheva, “Preparation and properties of palladium complexes having bidentate coordinated silsesquioxane”, Annual of the University of mining and geology, 54, part II, (2011) 184-188.

Резюме. При реакция на Pd(tmeda)Cl2, (tmeda=N,N,N’,N’-тетраметилетилен-диамин) и силсескиоксан трисиланол (c-C5H9)7Si7O9(OH)3, в присъствие на Ag2O е получен нов паладиев комплекс, който съдържа О,О-бидентатно свързан силсескиоксан, Pd{O11Si7(cyclo-C5H9)7(OH)}(tmeda). Съставът и структурата му са определени чрез ядрен магнитен резонанс, инфрачервена спектроскопия и елементен анализ. Намерено е, че този комплекс е продукт от термолизата на фенил-паладиевия комплекс Pd{O10Si7(cyclo-C5H9)7(OH)2}(Ph)(tmeda), проведена в неполярни разтворители и температура 60 оС.
II. Научни статии, равностойни на монография (номерацията съответства на представения списък на научните трудове)
12. N. Mintcheva, M. Tanabe, K. Osakada, “Preparation and structure of new phenylplatinum complexes containing silsesquioxane as a monodentate or bidentate ligand”, Organometallics, 25 (2006) 3776-3783. (IF 3.888)

Abstract: Incompletely condensed silsesquioxanes, R7Si7O9(OH)3 (R = cyclo-C5H9, iso-C4H9), react with trans-[PtI(Ph)(L)2] (L = PEt3, PMe2Ph) at room temperature in the presence of Ag2O to yield platinum complexes with a monodentate O-coordinated silsesquioxane, trans-[Pt{O10Si7R7(OH)2}(Ph)(L)2] (1a: R = cyclo-C5H9; L = PEt3, 1b: R = iso-C4H9; L = PEt3, 2a: R = cyclo-C5H9; L = PMe2Ph, 2b: R = iso-C4H9; L = PMe2Ph). Reactions of silsesquioxanes with trans-[PtI(Ph)(PPh3)2] in the presence of Ag2O at 55 °C afford unexpected Pt−Ag heterobimetallic complexes, [Pt{O11Si7R7(OH)(AgPPh3)}(Ph)(PPh3)] (3a: R = cyclo-C5H9, 3b: R = iso-C4H9) and a hydroxo-bridged dinuclear platinum complex, anti-[{PtPh(PPh3)}2(µ-OH)2] (4). These complexes were isolated and characterized by X-ray crystallography and 1H, 31P, 29Si, 13C NMR spectroscopy. The crystal structures of 3a and 3b show a square-planar coordination around the Pt center bonded to Ph, PPh3, and bidentate O,O-coordinated silsesquioxane. One of the coordinated oxygen atoms is also bound to the AgPPh3 group.
22. N. Mintcheva, I. Georgieva, T. Mihailov, N. Trendafilova, M. Tanabe, K. Osakada, “NMR, IR and DFT studies of phenylplatinum complexes with O-monodentate coordinated silsesquioxanate and auxiliary phosphine ligands”, J. Organomet. Chem. 697 (2012), 23-32. (IF 2.205)

Abstract: The molecular structure and spectroscopic properties of a series of phenylplatinum complexes containing silsesquioxanate and phosphine ligands with general formula trans-[Pt{O10Si7(R)7(OH)2}(Ph)(L)2] (1: R = cyclo-C5H9, L = PEt3; 2: R = iso-C4H9, L = PEt3; 3: R = CH3, L = PEt3; 4: R = cyclo-C5H9, L = PMe3; 5: R = cyclo-C5H9, L = PMe2Ph; 6: R = cyclo-C5H9, L = PPh2Me; 7: R = cyclo-C5H9, L = PPh3) have been investigated by DFT/OPW91/6-31G(d) calculations, 1H, 13C, 29Si and 31P NMR and IR spectroscopy. DFT molecular modeling based on available X-ray and NMR data for complexes 1 and 2 allowed deriving structure-NMR spectra correlations. It was found that the alkyl substituents (R) attached to Si atoms, cyclo-C5H9, iso-C4H9 and CH3, slightly influence the geometry and multinuclear NMR parameters of the complexes in the series studied. The molecular structures of the Pt(II) complexes with R = cyclo-C5H9 (4-7) were predicted by DFT calculations of their simplified models with R = CH3 (4’-7’). The geometry optimizations of 4’-7’ showed square-planar configuration of Pt(II) center bonded to two trans phosphine ligands, a phenyl group and an O-monocoordinated silsesquioxanate. The structures 4’-6’ are stabilized by two intramolecular hydrogen bonds similar to 1 and 2. A fast conformer exchange process AB and switching of H-bonds in solution of 16 were suggested based on (i) the calculated conformer energies and small barrier of the process, and (ii) the observed single 1H NMR signal at low magnetic field. The stability of the Pt(II) complexes depends on the nature of the phosphine ligands and decreases in the order PMe2Ph > PMe3 > PPh2Me > PEt3 > PPh3. The PPh3 ligands attached to Pt(II) in 7 cause the largest geometry changes and a new set of weaker hydrogen bonds. The comparison of the calculated NMR and IR parameters with the experimental spectroscopic data reveals good coincidence and thus confirmed the suggested molecular structures.
III. Учебни пособия (номерацията съответства на представения списък на научните трудове)

23. Н. Минчева, Учебно помагало за упражнения по аналитична химия. Минно-геоложки университет. София. 2012. Електронна версия.

Учебното помагало е предназначено за студентите от специалностите ХИГ, СДНГ и ГПМЕР на МГУ, които изучават дисциплината „Аналитична химия“ и е подготвено за провеждане на практическите занятия от учебната програма. В предложения материал се акцентира на титриметричния анализ, като представител на количествените методи за анализ от аналитичната химия. Разгледани са най-често използваните уреди и пособия в лабораторията по АХ, обяснени са няколко начина за изразяване на концентрацията на разтворите и примерни задачи за изчисления в титриметрията. Описани са упражнения, които се провеждат със студентите от посочените специалности, съгласно утвърдената учебна програма.

Каталог: docs -> N Juri
N Juri -> Конкурс за академична длъжност "Доцент" по професионално направление 8 „Проучване, добив и обработка на полезните изкопаеми", специалност „Обогатяване на полезни изкопаеми"
N Juri -> Конкурс за професор по Професионално направление Науки за земята
N Juri -> Конкурс за професор по научно направление 8 „проучване, добив и обработка на полезни изкопаеми" специалност „минно строителство"
N Juri -> И. Паздеров І. Дисертация и публикации, които са части от дисертационния труд
N Juri -> 19. Резюмета на трудовете, с които кандидатът участва 7а. Научни публикации до получаване на онс „Доктор“ (научна степен „Кандидат на техническите науки“), 1978-1988 г
N Juri -> Конкурса за получаване на научното звание "професор" по Професионално направление „Проучване, добив и обработка на полезни изкопаеми"
N Juri -> Конкурс за академичната длъжност „професор" по професионално направление Проучване, добив и обработка на полезни изкопаеми, специалност "Техника и технология на взривните работи" за нуждите на катедра Подземно строителство
N Juri -> С п и с ъ к на научните и научно-приложните трудове на доц д-р Венелин Желев Желев
N Juri -> Конкурс за академичната длъжност „професор" по професионално направление Икономика, специалност „Икономика и управление по отрасли"
N Juri -> Моделиране показатели на находища на подземни богатства и свързани с тях обекти чрез компютърни системи

Поделитесь с Вашими друзьями:

База данных защищена авторским правом ©obuch.info 2020
отнасят до администрацията

    Начална страница